2025-05-30
Solutions to Principles of Quantum Mechanics
00

Appendix

A.1 Matrix Inversion

Exercise A.1.1 Using the Method described above, show that

(213012111)1=(121254132)\begin{pmatrix} 2 & 1 & 3\\ 0 & 1 & 2\\ -1 & 1 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} 1 & -2 & 1\\ 2 & -5 & 4\\ -1 & 3 & -2 \end{pmatrix}

and

(213412012)1=112(451848422)\begin{pmatrix} 2 & 1 & 3\\ 4 & 1 & 2\\ 0 & -1 & 2 \end{pmatrix}^{-1}=\dfrac{1}{12} \begin{pmatrix} -4 & 5 & 1\\ 8 & -4 & -8\\ 4 & -2 & 2 \end{pmatrix}
2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 21 Path Integrals——II

21.1 Derivation

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 20 The Dirac Equation

20.1 The Free-Particle Dirac Equation

Exercise 20.1.1 Derive the continuity equation

Pt+j=0\dfrac{\partial P}{\partial t}+\nabla\cdot\vec{j}=0

where P=ψψP=\psi^{\dagger}\psi and j=cψαψ\vec{j}=c\psi^{\dagger}\vec{\alpha}\psi.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 19 Scattering Theory

19.1 Introductio

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 18 Time-Dependent Perturbation Theory