2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 15 Addition of Angular Momenta

15.1 A Simple Example

Exercise 15.1.1 Derive Eqs. (15.1.10) and (15.1.11). It might help to use

S1S2=S1zS2z+12(S1+S2+S1S2+)(15.1.12)\mathbf{S}_1 \cdot \mathbf{S}_2=S_{1 z} S_{2 z}+\frac{1}{2}\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right)\tag{15.1.12}
2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 14 Spin

14.1 Introduction

14.2 What is the Nature of Spin?

14.3 Kinematics of Spin

Exercise 14.3.1 Let us verify the above corollary explicitly. Take some spinor with components α=ρ1eiϕ1\alpha=\rho_1 \mathrm{e}^{\mathrm{i} \phi_1} and β=ρ2eiϕ2\beta=\rho_2 \mathrm{e}^{\mathrm{i} \phi_2}. From χχ=1\langle\chi \mid \chi\rangle=1, deduce that we can write ρ1=cos(θ/2)\rho_1=\cos (\theta / 2) and ρ2=sin(θ/2)\rho_2=\sin (\theta / 2) for some θ\theta. Next pull out a common phase factor so that the spinor takes the form in Eq. (14.3.28a). This verifies the corollary and also fixes n^\hat{n}.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 13 The Hydrogen Atom

13.1 The Eigenvalue Problem

Exercise 13.1.1 Derive Eqs. (13.1.11) and (13.1.14) starting from Eqs. (13.1.8)-(13.1.10).

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 12 Rotational Invariance and Angular Momentum

12.1 Translations in Two Dimensions

Exercise 12.1.1 Verify that a^P\hat{a} \cdot \mathbf{P} is the generator of infinitesimal translations along a by considering the relation

x,yIiδaPψ=ψ(xδax,yδay)\langle x, y| I-\frac{i}{\hbar} \boldsymbol{\delta} a \cdot \mathbf{P}|\psi\rangle=\psi\left(x-\delta a_x, y-\delta a_y\right)
2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 11 Symmetries and Their Consequences

11.1 Overview

11.2 Translational Invariance in Quantum Theory

Exercise 11.2.1 Verify Eq. (11.2.11b).