2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 20 The Dirac Equation

20.1 The Free-Particle Dirac Equation

Exercise 20.1.1 Derive the continuity equation

Pt+j=0\dfrac{\partial P}{\partial t}+\nabla\cdot\mathbf{j}=0

where P=ψψP=\psi^{\dagger}\psi and j=cψαψ\mathbf{j}=c\psi^{\dagger}\mathbf{\alpha}\psi.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 19 Scattering Theory

19.1 Introduction

19.2 Recapitulation of One-Dimensional Scattering and Overview

19.3 The Born Approximation (Time-Dependent Description)

Exercise 19.3.1 Show that

σYukawa=16πr02(gμr02)211+4k2r02\sigma_{\text{Yukawa}}=16 \pi r_0^2\left(\frac{g \mu r_0}{\hbar^2}\right)^2 \frac{1}{1+4 k^2 r_0^2}

where r0=1μ0r_0=1 \mu_0 is the range. Compare σ\sigma to the geometrical cross section associated with this range.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 18 Time-Dependent Perturbation Theory

18.1 The Problem

18.2 First-Order Perturbation Theory

Exercise 18.2.1 Show that if H1(t)=eEX/[1+(t/τ)2]H^1(t)=-e \mathscr{E} X /\left[1+(t / \tau)^2\right], then, to first order,

P01=e2E2π2τ22mωe2ωτP_{0 \rightarrow 1}=\frac{e^2 \mathscr{E}^2 \pi^2 \tau^2}{2 m \omega \hbar} \mathrm{e}^{-2 \omega \tau}
2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 17 Time-Independence Perturbation Theory

17.1 The Formalism

17.2 Some Examples

Exercise 17.2.1 Consider H1=λx4H^1=\lambda x^4 for the oscillator problem.

(1) Show that

En1=32λ4m2ω2[1+2n+2n2]E_n^1=\frac{3 \hbar^2 \lambda}{4 m^2 \omega^2}\left[1+2 n+2 n^2\right]

(2) Argue that no matter how small λ\lambda is, the perturbation expansion will break down for some large enough nn. What is the physical reason?

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 16 Variational and WKB Methods

16.1 The Variatonal Method

Exercise 16.1.1 Try ψ=exp(αx2)\psi=\exp \left(-\alpha x^2\right) for V=12mω2x2V=\dfrac{1}{2} m \omega^2 x^2 and find α0\alpha_0 and E(α0)E\left(\alpha_0\right).