2025-05-30
Solutions to Principles of Quantum Mechanics
00

Appendix

A.1 Matrix Inversion

Exercise A.1.1 Using the Method described above, show that

(213012111)1=(121254132)\begin{pmatrix} 2 & 1 & 3\\ 0 & 1 & 2\\ -1 & 1 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} 1 & -2 & 1\\ 2 & -5 & 4\\ -1 & 3 & -2 \end{pmatrix}

and

(213412012)1=112(451848422)\begin{pmatrix} 2 & 1 & 3\\ 4 & 1 & 2\\ 0 & -1 & 2 \end{pmatrix}^{-1}=\dfrac{1}{12} \begin{pmatrix} -4 & 5 & 1\\ 8 & -4 & -8\\ 4 & -2 & 2 \end{pmatrix}
2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 21 Path Integrals——II

21.1 Derivation of the Path Integral

21.2 Imaginary Time Formalism

21.3 Spin and Fermion Path Integrals

21.4 Summary

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 20 The Dirac Equation

20.1 The Free-Particle Dirac Equation

Exercise 20.1.1 Derive the continuity equation

Pt+j=0\dfrac{\partial P}{\partial t}+\nabla\cdot\mathbf{j}=0

where P=ψψP=\psi^{\dagger}\psi and j=cψαψ\mathbf{j}=c\psi^{\dagger}\mathbf{\alpha}\psi.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 19 Scattering Theory

19.1 Introduction

19.2 Recapitulation of One-Dimensional Scattering and Overview

19.3 The Born Approximation (Time-Dependent Description)

Exercise 19.3.1 Show that

σYukawa=16πr02(gμr02)211+4k2r02\sigma_{\text{Yukawa}}=16 \pi r_0^2\left(\frac{g \mu r_0}{\hbar^2}\right)^2 \frac{1}{1+4 k^2 r_0^2}

where r0=1μ0r_0=1 \mu_0 is the range. Compare σ\sigma to the geometrical cross section associated with this range.

2025-05-30
Solutions to Principles of Quantum Mechanics
00

Chapter 18 Time-Dependent Perturbation Theory

18.1 The Problem

18.2 First-Order Perturbation Theory

Exercise 18.2.1 Show that if H1(t)=eEX/[1+(t/τ)2]H^1(t)=-e \mathscr{E} X /\left[1+(t / \tau)^2\right], then, to first order,

P01=e2E2π2τ22mωe2ωτP_{0 \rightarrow 1}=\frac{e^2 \mathscr{E}^2 \pi^2 \tau^2}{2 m \omega \hbar} \mathrm{e}^{-2 \omega \tau}