2025-05-30
Solutions to Principles of Quantum Mechanics
00

目录

Chapter 20 The Dirac Equation
20.1 The Free-Particle Dirac Equation
20.2 Electromagnetic Interaction of the Dirac Paritlce
20.3 More on Relativistic Quantum Mechanics

Chapter 20 The Dirac Equation

20.1 The Free-Particle Dirac Equation

Exercise 20.1.1 Derive the continuity equation

Pt+j=0\dfrac{\partial P}{\partial t}+\nabla\cdot\mathbf{j}=0

where P=ψψP=\psi^{\dagger}\psi and j=cψαψ\mathbf{j}=c\psi^{\dagger}\mathbf{\alpha}\psi.

Solution. Start from the Dirac equation

iψt=(cαP+βmc2)ψψt=cαψiβmc2ψ\begin{aligned} \mathrm{i}\hbar\dfrac{\partial\psi}{\partial t}&=\left(c\mathbf{\alpha}\cdot\mathbf{P}+\beta mc^{2}\right)\psi\\ \dfrac{\partial\psi}{\partial t}&=-c\mathbf{\alpha}\cdot\nabla\psi-\dfrac{\mathrm{i}}{\hbar}\beta mc^{2}\psi \end{aligned}

where P=i\mathbf{P}=-\mathrm{i}\hbar\nabla. Take \dagger on the both side, we get

ψt=cψα+iψβmc2\dfrac{\partial\psi^{\dagger}}{\partial t}=-c\nabla\psi^{\dagger}\cdot\mathbf{\alpha}^{\dagger}+\dfrac{\mathrm{i}}{\hbar}\psi^{\dagger}\beta^{\dagger} mc^{2}

Since

α=αβ=β\begin{aligned} \mathbf{\alpha}^{\dagger}&=\mathbf{\alpha}\\ \beta^{\dagger}&=\beta \end{aligned}

We get

ψt=cψα+iψβmc2\dfrac{\partial\psi^{\dagger}}{\partial t}=-c\nabla\psi^{\dagger}\cdot\mathbf{\alpha}+\dfrac{\mathrm{i}}{\hbar}\psi^{\dagger}\beta mc^{2}

Thus

Pt=t(ψψ)=ψtψ+ψψt=cψαψ+iψβmc2ψψcαψiψβmc2ψ=c(ψαψ+ψαψ)=(cψαψ)=j\begin{aligned} \dfrac{\partial P}{\partial t}=\dfrac{\partial}{\partial t}(\psi^{\dagger}\psi)&=\dfrac{\partial\psi^{\dagger}}{\partial t}\psi+\psi^{\dagger}\dfrac{\partial \psi}{\partial t}\\ &=-c\nabla\psi^{\dagger}\cdot\mathbf{\alpha}\psi+\cancel{\dfrac{\mathrm{i}}{\hbar}\psi^{\dagger}\beta mc^{2}\psi}-\psi^{\dagger}c\mathbf{\alpha}\cdot\nabla\psi-\cancel{\dfrac{\mathrm{i}}{\hbar}\psi^{\dagger}\beta mc^{2}\psi}\\ &=-c\left(\nabla\psi^{\dagger}\cdot\mathbf{\alpha}\psi+\psi^{\dagger}\mathbf{\alpha}\cdot\nabla\psi\right)\\ &=-\nabla\cdot(c\psi^{\dagger}\mathbf{\alpha}\psi)=-\nabla\cdot\mathbf{j} \end{aligned}

Finally, we get the continuity equation

Pt+j=0\dfrac{\partial P}{\partial t}+\nabla\cdot\mathbf{j}=0
 ~\tag*{$\blacksquare$}

20.2 Electromagnetic Interaction of the Dirac Paritlce

Exercise 20.2.1 Derive Eq. (20.2.16).

Solution. To compute the π×π\boldsymbol{\pi}\times\boldsymbol{\pi}, we could compute the ii-th component first:

(π×π)i=εijkπjπk=12εijkπjπk+12εijkπjπk=12εijkπjπk+12εikjπkπj=12εijkπjπk12εijkπkπj=12εijk[πj,πk]\begin{aligned} (\boldsymbol{\pi}\times\boldsymbol{\pi})_{i}&=\varepsilon_{ijk}\pi_{j}\pi_{k}\\ &=\dfrac{1}{2}\varepsilon_{ijk}\pi_{j}\pi_{k}+\dfrac{1}{2}\varepsilon_{ijk}\pi_{j}\pi_{k}\\ &=\dfrac{1}{2}\varepsilon_{ijk}\pi_{j}\pi_{k}+\dfrac{1}{2}\varepsilon_{ikj}\pi_{k}\pi_{j}\\ &=\dfrac{1}{2}\varepsilon_{ijk}\pi_{j}\pi_{k}-\dfrac{1}{2}\varepsilon_{ijk}\pi_{k}\pi_{j}\\ &=\dfrac{1}{2}\varepsilon_{ijk}[\pi_{j},\pi_{k}] \end{aligned}

Therefore, we need to compute the commutative relation between the mechanical momentum operator components, by definition, it is

[πj,πk]=[PjqcAj,PkqcAk]=[Pj,Pk]qc[Pj,Ak]qc[Aj,Pk]+(qc)2[Aj,Ak]\begin{aligned} [\pi_{j},\pi_{k}]&=\left[P_{j}-\dfrac{q}{c}A_{j},P_{k}-\dfrac{q}{c}A_{k}\right]\\ &=[P_{j},P_{k}]-\dfrac{q}{c}[P_{j},A_{k}]-\dfrac{q}{c}[A_{j},P_{k}]+\left(\dfrac{q}{c}\right)^{2}[A_{j},A_{k}] \end{aligned}

Now let's compute the commutators:

[Pj,Pk]ψ=(PjPkPkPj)ψ=Pj(ixk)Pk(ixj)=(i)2xj(ψxk)(i)2xk(ψxj)=22ψxjxk+22ψxkxj=0\begin{aligned} [P_{j},P_{k}]\psi&=(P_{j}P_{k}-P_{k}P_{j})\psi=P_{j}\left(-\mathrm{i}\hbar\dfrac{\partial}{\partial x_{k}}\right)-P_{k}\left(-\mathrm{i}\hbar\dfrac{\partial}{\partial x_{j}}\right)\\ &=(-\mathrm{i}\hbar)^{2}\dfrac{\partial}{\partial x_{j}}\left(\dfrac{\partial\psi}{\partial x_{k}}\right)-(-\mathrm{i}\hbar)^{2}\dfrac{\partial}{\partial x_{k}}\left(\dfrac{\partial\psi}{\partial x_{j}}\right)\\ &=-\hbar^{2}\dfrac{\partial^{2}\psi}{\partial x_{j}\partial x_{k}}+\hbar^{2}\dfrac{\partial^{2}\psi}{\partial x_{k}\partial x_{j}}=0 \end{aligned}
[Pj,Ak]ψ=(PjAkAkPj)ψ=Pj(Akψ)Ak(Pjψ)=ixj(Akψ)Ak(iψxj)=i(Akxjψ+Akψxj)Ak(iψxj)=iAkxjψ\begin{aligned} [P_{j},A_{k}]\psi&=(P_{j}A_{k}-A_{k}P_{j})\psi=P_{j}(A_{k}\psi)-A_{k}(P_{j}\psi)\\ &=-\mathrm{i}\hbar\dfrac{\partial}{\partial x_{j}}(A_{k}\psi)-A_{k}\left(-\mathrm{i}\hbar\dfrac{\partial\psi}{\partial x_{j}}\right)\\ &=-\mathrm{i}\hbar\left(\dfrac{\partial A_{k}}{\partial x_{j}}\psi+A_{k}\dfrac{\partial\psi}{\partial x_{j}}\right)-A_{k}\left(-\mathrm{i}\hbar\dfrac{\partial\psi}{\partial x_{j}}\right)\\ &=-\mathrm{i}\hbar\dfrac{\partial A_{k}}{\partial x_{j}}\psi \end{aligned}
[Aj,Pk]ψ=(AjPkPkAj)ψ=Aj(Pkψ)Pk(Ajψ)=Aj(iψxk)(i)xk(Ajψ)=Aj(iψxk)+iAjxkψ+iAjψxk=iAjxkψ\begin{aligned} [A_{j},P_{k}]\psi&=(A_{j}P_{k}-P_{k}A_{j})\psi=A_{j}(P_{k}\psi)-P_{k}(A_{j}\psi)\\ &=A_{j}\left(-\mathrm{i}\hbar\dfrac{\partial \psi}{\partial x_{k}}\right)-(-\mathrm{i}\hbar)\dfrac{\partial}{\partial x_{k}}(A_{j}\psi)\\ &=A_{j}\left(-\mathrm{i}\hbar\dfrac{\partial \psi}{\partial x_{k}}\right)+\mathrm{i}\hbar\dfrac{\partial A_{j}}{\partial x_{k}}\psi+\mathrm{i}\hbar A_{j}\dfrac{\partial\psi}{\partial x_{k}}\\ &=\mathrm{i}\hbar\dfrac{\partial A_{j}}{\partial x_{k}}\psi \end{aligned}
[Aj,Ak]ψ=(AjAkAkAj)ψ=(AjAkAjAk)ψ=0[A_{j},A_{k}]\psi=(A_{j}A_{k}-A_{k}A_{j})\psi=(A_{j}A_{k}-A_{j}A_{k})\psi=0

Therefore,

(π×π)i=12εijk[πj,πk]=qc(iAkxj+iAjxk)=iqc(AkxjAjxk)=iqcεijkAkxj=iqcBi\begin{aligned} (\boldsymbol{\pi}\times\boldsymbol{\pi})_{i}&=\dfrac{1}{2}\varepsilon_{ijk}[\pi_{j},\pi_{k}]\\ &=-\dfrac{q}{c}\left(-\mathrm{i}\hbar\dfrac{\partial A_{k}}{\partial x_{j}}+\mathrm{i}\hbar\dfrac{\partial A_{j}}{\partial x_{k}}\right)\\ &=\dfrac{\mathrm{i}q\hbar}{c}\left(\dfrac{\partial A_{k}}{\partial x_{j}}-\dfrac{\partial A_{j}}{\partial x_{k}}\right)\\ &=\dfrac{\mathrm{i}q\hbar}{c}\varepsilon_{ijk}\dfrac{\partial A_{k}}{\partial x_{j}}\\ &=\dfrac{\mathrm{i}q\hbar}{c}B_{i} \end{aligned}

Thus we get Eq. (20.2.16):

π×π=iqcB\boldsymbol{\pi}\times\boldsymbol{\pi}=\dfrac{\mathrm{i}q\hbar}{c}\mathbf{B}
 ~\tag*{$\blacksquare$}

Exercise 20.2.2 Solve for the exact levels of the Dirac particle in a uniform magnetic field B=B0k\mathbf{B}=B_{0}\mathbf{k}. Assume A=(B0/2)(yi+xj)\mathbf{A}=(B_{0}/2)(-y\mathbf{i}+x\mathbf{j}). Consult Exercise 12.3.8. (Write the equation for χ\chi.)

20.3 More on Relativistic Quantum Mechanics