2025-05-30
Solutions to Principles of Quantum Mechanics
00

目录

Chapter 9 The Heisenberg Uncertainty Relations
9.1 Introduction
9.2 Derivation of the Uncertainty Relations
9.3 The Minimum Uncertainty Packet
9.4 Applications of the Uncertainty Principle
9.5 The Energy-Time Unvertainty Relation

Chapter 9 The Heisenberg Uncertainty Relations

9.1 Introduction

9.2 Derivation of the Uncertainty Relations

9.3 The Minimum Uncertainty Packet

9.4 Applications of the Uncertainty Principle

Exercise 9.4.1 Consider the oscillator in the state n=1|n=1\rangle and verify that

1X21X2mω\left\langle\frac{1}{X^2}\right\rangle \simeq \frac{1}{\left\langle X^2\right\rangle} \simeq \frac{m \omega}{\hbar}

Exercise 9.4.2 (1) By referring to the table of integrals in Appendix A.2, verify that

ψ=1(πa03)1/2er/a0,r=(x2+y2+z2)1/2\psi=\frac{1}{\left(\pi a_0^3\right)^{1 / 2}} e^{-r / a_0}, \quad r=\left(x^2+y^2+z^2\right)^{1 / 2}

is a normalized wave function (of the ground state of hydrogen). Note that in three dimensions the normalization condition is

ψψ=ψ(r,θ,ϕ)ψ(r,θ,ϕ)r2drd(cosθ)dϕ=4πψ(r)ψ(r)r2dr=1\begin{aligned} \langle\psi \mid \psi\rangle & =\int \psi^*(r, \theta, \phi) \psi(r, \theta, \phi) r^2 \mathrm{d} r \mathrm{d}(\cos \theta) \mathrm{d} \phi \\ & =4 \pi \int \psi^*(r) \psi(r) r^2 \mathrm{d} r=1 \end{aligned}

for a function of just rr.

(2) Calculate (ΔX)2(\Delta X)^2 in this state [argue that (ΔX)2=13r2(\Delta X)^2=\dfrac{1}{3}\left\langle r^2\right\rangle] and regain the result quoted in Eq. (9.4.9).

(3) Show that 1/r1/rme2/2\langle 1 / r\rangle \simeq 1 /\langle r\rangle \simeq m e^2 / \hbar^2 in this state.

Exercise 9.4.3 Ignore the fact that the hydrogen atom is a three-dimensional system and pretend that

H=P22me2(R2)1/2(P2=Px2+Py2+Pz2,R2=X2+Y2+Z2)H=\frac{P^2}{2 m}-\frac{e^2}{\left(R^2\right)^{1 / 2}} \quad\left(P^2=P_x^2+P_y^2+P_z^2, R^2=X^2+Y^2+Z^2\right)

corresponds to a one-dimensional problem. Assuming

ΔPΔR/2\Delta P \cdot \Delta R \geqslant \hbar / 2

estimate the ground-state energy.

Exercise 9.4.4 Compute ΔTΔX\Delta T \cdot \Delta X, where T=P2/2mT=P^2/2m. Why is this relation not so famous?

9.5 The Energy-Time Unvertainty Relation