Appendix
A.1 Matrix Inversion
Exercise A.1.1 Using the Method described above, show that
⎝⎛20−1111321⎠⎞−1=⎝⎛12−1−2−5314−2⎠⎞
and
⎝⎛24011−1322⎠⎞−1=121⎝⎛−4845−4−21−82⎠⎞
Solution. (1) For given matrix
M=⎝⎛20−1111321⎠⎞
Define the row vectors:
A=(2,1,3),B=(0,1,2),C=(−1,1,1)
Compute the reciprocal vectors
AR=B×C=∣∣i0−1j11k21∣∣=i(1⋅1−2⋅1)−j(0⋅1−2⋅(−1))+k(0⋅1−1⋅(−1))=i(−1)−j(2)+k(1)=(−1,−2,1)
BR=C×A=∣∣i−12j11k13∣∣=i(1⋅3−1⋅1)−j(−1⋅3−1⋅2)+k(−1⋅1−1⋅2)=i(2)−j(−5)+k(−3)=(2,5,−3)
CR=A×B=∣∣i20j11k32∣∣=i(1⋅2−3⋅1)−j(2⋅2−3⋅0)+k(2⋅1−1⋅0)=i(−1)−j(4)+k(2)=(−1,−4,2)
Construct the cofactor matrix
M=⎝⎛−1−2125−3−1−42⎠⎞
Compute the determinant
detM=A⋅(B×C)=∣∣20−1111321∣∣=2(1⋅1−2⋅1)−1(0⋅1−2⋅(−1))+3(0⋅1−1⋅(−1))=2(−1)−1(2)+3(1)=−2−2+3=−1
The inverse matrix is
M−1=detMM=−11⎝⎛−1−2125−3−1−42⎠⎞=⎝⎛12−1−2−5314−2⎠⎞
(2) For given matrix
M=⎝⎛24011−1322⎠⎞
Define the row vectors as
A=(2,1,3),B=(4,1,2),C=(0,−1,2)
Compute the reciprocal vectors
AR=B×C=∣∣i40j1−1k22∣∣=i(1⋅2−2⋅(−1))−j(4⋅2−2⋅0)+k(4⋅(−1)−1⋅0)=i(4)−j(8)+k(−4)=(4,−8,−4)
BR=C×A=∣∣i02j−11k23∣∣=i((−1)⋅3−2⋅1)−j(0⋅3−2⋅2)+k(0⋅1−(−1)⋅2)=i(−5)−j(−4)+k(2)=(−5,4,2)
CR=A×B=∣∣i24j11k32∣∣=i(1⋅2−3⋅1)−j(2⋅2−3⋅4)+k(2⋅1−1⋅4)=i(−1)−j(−8)+k(−2)=(−1,8,−2)
Construct the cofactor matrix:
M=⎝⎛4−8−4−542−18−2⎠⎞
The determinant is
detM=A⋅(B×C)=∣∣24011−1322∣∣=2(1⋅2−2⋅(−1))−1(4⋅2−2⋅0)+3(4⋅(−1)−1⋅0)=2(4)−1(8)+3(−4)=8−8−12=−12
Inverse matrix is
M−1=detMM=−121⎝⎛4−8−4−542−18−2⎠⎞=121⎝⎛−4845−4−21−82⎠⎞
■
A.2 Gaussian Integrals
A.3 Complex Numbers
A.4 The iε Prescription
预览: