Chapter 4 The Postulates——a General Discussion
4.1 The Postulates
4.2 Discussion of Postulates I-III
Exercise 4.2.1 Consider the following operators on a Hilbert space V 3 ( C ) \mathbb{V}^{3}(C) V 3 ( C ) :
L x = 1 2 1 / 2 ( 0 1 0 1 0 1 0 1 0 ) L y = 1 2 1 / 2 ( 0 − i 0 i 0 − i 0 i 0 ) L z = ( 1 0 0 0 0 0 0 0 − 1 ) L_{x}=\frac{1}{2^{1/2}}\begin{pmatrix}
0&1&0\\
1&0&1\\
0&1&0
\end{pmatrix}\qquad L_{y}=\frac{1}{2^{1/2}}\begin{pmatrix}
0&-i&0\\
i&0&-i\\
0&i&0
\end{pmatrix}\qquad L_{z}=\begin{pmatrix}
1&0&0\\
0&0&0\\
0&0&-1
\end{pmatrix} L x = 2 1/2 1 ⎝ ⎛ 0 1 0 1 0 1 0 1 0 ⎠ ⎞ L y = 2 1/2 1 ⎝ ⎛ 0 i 0 − i 0 i 0 − i 0 ⎠ ⎞ L z = ⎝ ⎛ 1 0 0 0 0 0 0 0 − 1 ⎠ ⎞
(1) What are the possible values one can obtain if L z L_{z} L z is measured?
(2) Take the state in which L z = 1 L_{z}=1 L z = 1 . In this state what are ⟨ L x ⟩ \langle L_{x}\rangle ⟨ L x ⟩ , ⟨ L x 2 ⟩ \langle L_{x}^{2}\rangle ⟨ L x 2 ⟩ and Δ L x \Delta L_{x} Δ L x ?
(3) Find the normalized eigenstates and the eigenvalues of L x L_{x} L x in the L z L_{z} L z basis.
(4) If the particle is in the state with L z = − 1 L_{z}=-1 L z = − 1 , and L x L_{x} L x is measured, what are the possible outcomes and their probabilities?
(5) Consider the state
∣ ψ ⟩ = ( 1 / 2 1 / 2 1 / 2 1 / 2 ) |\psi\rangle=\begin{pmatrix}
1/2\\
1/2\\
1/2^{1/2}
\end{pmatrix} ∣ ψ ⟩ = ⎝ ⎛ 1/2 1/2 1/ 2 1/2 ⎠ ⎞
in the L z L_{z} L z basis. If L z 2 L_{z}^{2} L z 2 is measured in this state and a result + 1 +1 + 1 is obtained, what is the state after the measurement? How probable was this result? If L z L_{z} L z is measured, what are the outcomes and respective probabilities?
(6) A particle is in a state for which the probabilities are P ( L z = 1 ) = 1 / 4 P(L_{z}=1)=1/4 P ( L z = 1 ) = 1/4 , P ( L z = 0 ) = 1 / 2 P(L_{z}=0)=1/2 P ( L z = 0 ) = 1/2 , and P ( L z = − 1 ) = 1 / 4 P(L_{z}=-1)=1/4 P ( L z = − 1 ) = 1/4 . Convince yourself that the most general, normalized state with this property is
∣ ψ ⟩ = e i δ 1 2 ∣ L z = 1 ⟩ + e i δ 2 2 1 / 2 ∣ L z = 0 ⟩ + e i δ 3 2 ∣ L z = − 1 ⟩ |\psi\rangle=\frac{e^{i \delta_1}}{2}\left|L_z=1\right\rangle+\frac{e^{i \delta_2}}{2^{1 / 2}}\left|L_z=0\right\rangle+\frac{e^{i \delta_3}}{2}\left|L_z=-1\right\rangle ∣ ψ ⟩ = 2 e i δ 1 ∣ L z = 1 ⟩ + 2 1/2 e i δ 2 ∣ L z = 0 ⟩ + 2 e i δ 3 ∣ L z = − 1 ⟩
It was stated earlier on that if ∣ ψ ⟩ |\psi\rangle ∣ ψ ⟩ is a normalized state then the state e i θ ∣ ψ ⟩ e^{i \theta}|\psi\rangle e i θ ∣ ψ ⟩ is a physically equivalent normalized state. Does this mean that the factors e i δ i e^{i \delta_i} e i δ i multiplying the L z L_z L z eigenstates are irrelevant? [Calculate for example P ( L x = 0 ) P\left(L_x=0\right) P ( L x = 0 ) .]
Solution. (1) The possible values one can obtain if L z L_{z} L z is measured are its eigenvalues
L z = ( 1 0 0 0 0 0 0 0 − 1 ) L_{z}=\begin{pmatrix}
1&0&0\\
0&0&0\\
0&0&-1
\end{pmatrix} L z = ⎝ ⎛ 1 0 0 0 0 0 0 0 − 1 ⎠ ⎞
Eigenvalues are 1 , 0 , − 1 {1,0,-1} 1 , 0 , − 1 .
(2) The state in which L z ∣ ψ ⟩ = 1 ⋅ ∣ ψ ⟩ L_{z}|\psi\rangle=1\cdot|\psi\rangle L z ∣ ψ ⟩ = 1 ⋅ ∣ ψ ⟩ is the corresponding eigenvector
∣ ψ ⟩ = ( 1 0 0 ) |\psi\rangle=\begin{pmatrix}
1\\0\\0
\end{pmatrix} ∣ ψ ⟩ = ⎝ ⎛ 1 0 0 ⎠ ⎞
Then in ∣ ψ ⟩ |\psi\rangle ∣ ψ ⟩
⟨ L x ⟩ = ⟨ ψ ∣ L x ∣ ψ ⟩ = ( 1 0 0 ) 1 2 ( 0 1 0 1 0 1 0 1 0 ) ( 1 0 0 ) = 1 2 ( 1 0 0 ) ( 0 1 0 ) = 0 ⟨ L x 2 ⟩ = ⟨ ψ ∣ L x 2 ∣ ψ ⟩ = ( 1 0 0 ) 1 2 ( 0 1 0 1 0 1 0 1 0 ) ( 0 1 0 1 0 1 0 1 0 ) ( 1 0 0 ) = 1 2 ( 0 1 0 ) ( 0 1 0 ) = 1 2 Δ L x = ⟨ L x 2 ⟩ − ( ⟨ L x ⟩ ) 2 = ( 1 2 ) − 0 2 = 1 2 \begin{aligned}
\langle L_{x}\rangle&=\langle\psi|L_{x}|\psi\rangle=(1~0~0)\frac{1}{\sqrt{2}}\begin{pmatrix}
0&1&0\\
1&0&1\\
0&1&0
\end{pmatrix}\begin{pmatrix}
1\\0\\0
\end{pmatrix}=\frac{1}{\sqrt{2}}(1~0~0)\begin{pmatrix}
0\\1\\0
\end{pmatrix}=0\\
\langle L_{x}^{2}\rangle&=\langle\psi|L_{x}^{2}|\psi\rangle=(1~0~0)\frac{1}{2}\begin{pmatrix}
0&1&0\\
1&0&1\\
0&1&0
\end{pmatrix}\begin{pmatrix}
0&1&0\\
1&0&1\\
0&1&0
\end{pmatrix}\begin{pmatrix}
1\\0\\0
\end{pmatrix}=\frac{1}{2}(0~1~0)\begin{pmatrix}
0\\1\\0
\end{pmatrix}=\frac{1}{2}\\
\Delta L_{x}&=\sqrt{\langle L_{x}^{2}\rangle-(\langle L_{x}\rangle)^{2}}=\sqrt{\left(\frac{1}{2}\right)-0^{2}}=\frac{1}{\sqrt{2}}
\end{aligned} ⟨ L x ⟩ ⟨ L x 2 ⟩ Δ L x = ⟨ ψ ∣ L x ∣ ψ ⟩ = ( 1 0 0 ) 2 1 ⎝ ⎛ 0 1 0 1 0 1 0 1 0 ⎠ ⎞ ⎝ ⎛ 1 0 0 ⎠ ⎞ = 2 1 ( 1 0 0 ) ⎝ ⎛ 0 1 0 ⎠ ⎞ = 0 = ⟨ ψ ∣ L x 2 ∣ ψ ⟩ = ( 1 0 0 ) 2 1 ⎝ ⎛ 0 1 0 1 0 1 0 1 0 ⎠ ⎞ ⎝ ⎛ 0 1 0 1 0 1 0 1 0 ⎠ ⎞ ⎝ ⎛ 1 0 0 ⎠ ⎞ = 2 1 ( 0 1 0 ) ⎝ ⎛ 0 1 0 ⎠ ⎞ = 2 1 = ⟨ L x 2 ⟩ − (⟨ L x ⟩ ) 2 = ( 2 1 ) − 0 2 = 2 1
(3) The characteristic equation for L x L_{x} L x is
0 = det ( L x − λ ) = det ( − λ 1 2 0 1 2 − λ 1 2 0 1 2 − λ ) = λ − λ 3 ⇒ λ ∈ { 1 , 0 , − 1 } . 0=\det(L_{x}-\lambda)=\det\begin{pmatrix}
-\lambda & \frac{1}{\sqrt{2}}& 0\\
\frac{1}{\sqrt{2}}&-\lambda&\frac{1}{\sqrt{2}}\\
0&\frac{1}{\sqrt{2}}&-\lambda
\end{pmatrix}=\lambda-\lambda^{3}\qquad \Rightarrow \qquad \lambda\in\{1,0,-1\}. 0 = det ( L x − λ ) = det ⎝ ⎛ − λ 2 1 0 2 1 − λ 2 1 0 2 1 − λ ⎠ ⎞ = λ − λ 3 ⇒ λ ∈ { 1 , 0 , − 1 } .
The corresponding eigenvectors ∣ λ ⟩ |\lambda\rangle ∣ λ ⟩ , then satisfy
0 = ( L x − λ I ) ∣ λ ⟩ = ( − λ 1 2 0 1 2 − λ 1 2 0 1 2 − λ ) ( a b c ) = ( − λ a + b 2 a 2 − λ b + c 2 b 2 − λ a ) 0=(L_{x}-\lambda I)|\lambda\rangle=\begin{pmatrix}
-\lambda & \frac{1}{\sqrt{2}}& 0\\
\frac{1}{\sqrt{2}}&-\lambda&\frac{1}{\sqrt{2}}\\
0&\frac{1}{\sqrt{2}}&-\lambda
\end{pmatrix}\begin{pmatrix}
a\\b\\c
\end{pmatrix}=
\begin{pmatrix}
-\lambda a+\frac{b}{\sqrt{2}}\\
\frac{a}{\sqrt{2}}-\lambda b+\frac{c}{\sqrt{2}}\\
\frac{b}{\sqrt{2}}-\lambda a
\end{pmatrix} 0 = ( L x − λ I ) ∣ λ ⟩ = ⎝ ⎛ − λ 2 1 0 2 1 − λ 2 1 0 2 1 − λ ⎠ ⎞ ⎝ ⎛ a b c ⎠ ⎞ = ⎝ ⎛ − λa + 2 b 2 a − λb + 2 c 2 b − λa ⎠ ⎞
where we have parameterized the components of ∣ λ ⟩ |\lambda\rangle ∣ λ ⟩ by ( a b c ) (a~b~c) ( a b c ) . For λ = 1 \lambda=1 λ = 1 , we can solve for b b b and c c c in terms of a a a by solving the following equations:
{ − a + b 2 = 0 a 2 − b + c 2 = 0 b 2 − a = 0 \left\{\begin{aligned}
-a+\frac{b}{\sqrt{2}}=0\\
\frac{a}{\sqrt{2}}-b+\frac{c}{\sqrt{2}}=0\\
\frac{b}{\sqrt{2}}-a=0
\end{aligned}\right. ⎩ ⎨ ⎧ − a + 2 b = 0 2 a − b + 2 c = 0 2 b − a = 0
We get
{ b = 2 a c = a \left\{
\begin{aligned}
b&=\sqrt{2}a\\
c&=a
\end{aligned}
\right. { b c = 2 a = a
We then determine a a a by normalizing ∣ λ = 1 ⟩ |\lambda=1\rangle ∣ λ = 1 ⟩ :
∣ λ = 1 ⟩ = ( a 2 a a ) ⇒ 1 = ⟨ λ = 1 ∣ λ = 1 ⟩ = ( a ∗ 2 a ∗ a ∗ ) ( a 2 a a ) = 4 ∣ a ∣ 2 ⇒ a = 1 2 \begin{aligned}
&|\lambda=1\rangle=\begin{pmatrix}
a\\\sqrt{2}a\\a
\end{pmatrix}\\
\Rightarrow\quad
&1=\langle\lambda=1|\lambda=1\rangle=(a^{*}~\sqrt{2}a^{*}~a^{*})\begin{pmatrix}
a\\\sqrt{2}a\\a
\end{pmatrix}=4|a|^{2}\\
\Rightarrow\quad
&a=\frac{1}{2}
\end{aligned} ⇒ ⇒ ∣ λ = 1 ⟩ = ⎝ ⎛ a 2 a a ⎠ ⎞ 1 = ⟨ λ = 1∣ λ = 1 ⟩ = ( a ∗ 2 a ∗ a ∗ ) ⎝ ⎛ a 2 a a ⎠ ⎞ = 4∣ a ∣ 2 a = 2 1
(where I have chosen the arbitrary phase to be 1 1 1 ).
We could do the same thing for λ = 0 \lambda=0 λ = 0 :
{ b 2 = 0 a 2 + c 2 = 0 b 2 = 0 \left\{
\begin{aligned}
\frac{b}{\sqrt{2}}=0\\
\frac{a}{\sqrt{2}}+\frac{c}{\sqrt{2}}=0\\
\frac{b}{\sqrt{2}}=0
\end{aligned}
\right. ⎩ ⎨ ⎧ 2 b = 0 2 a + 2 c = 0 2 b = 0
has a solution:
{ b = 0 c = − a \left\{
\begin{aligned}
b&=0\\
c&=-a
\end{aligned}
\right. { b c = 0 = − a
Normalizing:
∣ λ = 0 ⟩ = ( a 0 − a ) ⇒ 1 = ⟨ λ = 0 ∣ λ = 0 ⟩ = ( a ∗ 0 − a ∗ ) ( a 0 − a ) = 2 ∣ a ∣ 2 ⇒ a = 1 2 \begin{aligned}
&|\lambda=0\rangle=\begin{pmatrix}
a\\
0\\
-a
\end{pmatrix}\\
\Rightarrow\quad & 1=\langle \lambda=0|\lambda=0\rangle=(a^{*}~0~-a^{*})\begin{pmatrix}
a\\0\\-a
\end{pmatrix}=2|a|^{2}\\
\Rightarrow\quad & a=\frac{1}{\sqrt{2}}
\end{aligned} ⇒ ⇒ ∣ λ = 0 ⟩ = ⎝ ⎛ a 0 − a ⎠ ⎞ 1 = ⟨ λ = 0∣ λ = 0 ⟩ = ( a ∗ 0 − a ∗ ) ⎝ ⎛ a 0 − a ⎠ ⎞ = 2∣ a ∣ 2 a = 2 1
And for λ = − 1 \lambda=-1 λ = − 1 :
{ a + b 2 = 0 a 2 + b + c 2 = 0 b 2 + a = 0 \left\{\begin{aligned}
a+\frac{b}{\sqrt{2}}=0\\
\frac{a}{\sqrt{2}}+b+\frac{c}{\sqrt{2}}=0\\
\frac{b}{\sqrt{2}}+a=0
\end{aligned}\right. ⎩ ⎨ ⎧ a + 2 b = 0 2 a + b + 2 c = 0 2 b + a = 0
We get
{ b = − 2 a c = a \left\{
\begin{aligned}
b&=-\sqrt{2}a\\
c&=a
\end{aligned}
\right. { b c = − 2 a = a
Normalizing:
∣ λ = − 1 ⟩ = ( a − 2 a a ) ⇒ 1 = ⟨ λ = − 1 ∣ λ = − 1 ⟩ = ( a ∗ − 2 a ∗ a ∗ ) ( a − 2 a a ) = 4 ∣ a ∣ 2 ⇒ a = 1 2 \begin{aligned}
&|\lambda=-1\rangle=\begin{pmatrix}
a\\
-\sqrt{2}a\\
a
\end{pmatrix}\\
\Rightarrow\quad & 1=\langle \lambda=-1|\lambda=-1\rangle=(a^{*}~-\sqrt{2}a^{*}~a^{*})\begin{pmatrix}
a\\-\sqrt{2}a\\a
\end{pmatrix}=4|a|^{2}\\
\Rightarrow\quad & a=\frac{1}{2}
\end{aligned} ⇒ ⇒ ∣ λ = − 1 ⟩ = ⎝ ⎛ a − 2 a a ⎠ ⎞ 1 = ⟨ λ = − 1∣ λ = − 1 ⟩ = ( a ∗ − 2 a ∗ a ∗ ) ⎝ ⎛ a − 2 a a ⎠ ⎞ = 4∣ a ∣ 2 a = 2 1
Therefore,
∣ λ = 1 ⟩ = 1 2 ( 1 2 1 ) ∣ λ = 0 ⟩ = 1 2 ( 1 0 − 1 ) ∣ λ = − 1 ⟩ = 1 2 ( 1 − 2 1 ) |\lambda=1\rangle=\frac{1}{2}\begin{pmatrix}
1\\\sqrt{2}\\1
\end{pmatrix}\quad|\lambda=0\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}
1\\0\\-1
\end{pmatrix}\quad|\lambda=-1\rangle=\frac{1}{2}\begin{pmatrix}
1\\-\sqrt{2}\\1
\end{pmatrix} ∣ λ = 1 ⟩ = 2 1 ⎝ ⎛ 1 2 1 ⎠ ⎞ ∣ λ = 0 ⟩ = 2 1 ⎝ ⎛ 1 0 − 1 ⎠ ⎞ ∣ λ = − 1 ⟩ = 2 1 ⎝ ⎛ 1 − 2 1 ⎠ ⎞
Next, we should compute the components of these 3 3 3 L x L_{x} L x -eigenstate in the { ∣ 1 ⟩ , ∣ 0 ⟩ , ∣ − 1 ⟩ } \{|1\rangle,|0\rangle,|-1\rangle\} { ∣1 ⟩ , ∣0 ⟩ , ∣ − 1 ⟩} -basis of L z L_{z} L z -eigenstates. But since L z L_{z} L z is diagonal in the basis in which L x L_{x} L x , L y L_{y} L y and L z L_{z} L z are given, the basis that Shankar used to write down the matrix elements of L x L_{x} L x , L y L_{y} L y , L z L_{z} L z is the L z L_{z} L z -eigenbasis. So the components of ∣ L x = 1 , 0 , − 1 ⟩ |L_{x}=1,0,-1\rangle ∣ L x = 1 , 0 , − 1 ⟩ in the given basis that we just calculated are their components in the L z L_{z} L z -eigenbasis.
(4) The eigenvectors of L z L_{z} L z corresponding to L z = − 1 L_{z}=-1 L z = − 1 is ( 0 0 1 ) \begin{pmatrix}
0\\0\\1
\end{pmatrix} ⎝ ⎛ 0 0 1 ⎠ ⎞ .
If we measure L x L_{x} L x in any state, the possible outcomes are any one of the eigenvalues L x = ± 1 , 0 L_{x}=\pm 1, 0 L x = ± 1 , 0 .
The probabilities for L x = ± 1 , 0 L_{x}=\pm 1,0 L x = ± 1 , 0 in the state ∣ − 1 ⟩ = ∣ L z = − 1 ⟩ |-1\rangle=|L_{z}=-1\rangle ∣ − 1 ⟩ = ∣ L z = − 1 ⟩ are:
P ( L x = 1 ) = ∣ ⟨ L x = 1 ∣ L z = − 1 ⟩ ∣ 2 = ∣ ( 1 2 1 2 1 2 ) ( 0 0 1 ) ∣ 2 = 1 4 P ( L x = 0 ) = ∣ ⟨ L x = 0 ∣ L z = − 1 ⟩ ∣ 2 = ∣ ( 1 2 0 − 1 2 ) ( 0 0 1 ) ∣ 2 = 1 2 P ( L x = − 1 ) = ∣ ⟨ L x = − 1 ∣ L z = − 1 ⟩ ∣ 2 = ∣ ( 1 2 − 1 2 1 2 ) ( 0 0 1 ) ∣ 2 = 1 4 \begin{aligned}
&P(L_{x}=1)=|\langle L_{x}=1|L_{z}=-1\rangle|^{2}=\left|(\frac{1}{2}~\frac{1}{\sqrt{2}}~\frac{1}{2})\begin{pmatrix}
0\\0\\1
\end{pmatrix}\right|^{2}=\frac{1}{4}\\
&P(L_{x}=0)=|\langle L_{x}=0|L_{z}=-1\rangle|^{2}=\left|(\frac{1}{\sqrt{2}}~0~-\frac{1}{\sqrt{2}})\begin{pmatrix}
0\\0\\1
\end{pmatrix}\right|^{2}=\frac{1}{2}\\
&P(L_{x}=-1)=|\langle L_{x}=-1|L_{z}=-1\rangle|^{2}=\left|(\frac{1}{2}~-\frac{1}{\sqrt{2}}~\frac{1}{2})\begin{pmatrix}
0\\0\\1
\end{pmatrix}\right|^{2}=\frac{1}{4}
\end{aligned} P ( L x = 1 ) = ∣ ⟨ L x = 1∣ L z = − 1 ⟩ ∣ 2 = ∣ ∣ ( 2 1 2 1 2 1 ) ⎝ ⎛ 0 0 1 ⎠ ⎞ ∣ ∣ 2 = 4 1 P ( L x = 0 ) = ∣ ⟨ L x = 0∣ L z = − 1 ⟩ ∣ 2 = ∣ ∣ ( 2 1 0 − 2 1 ) ⎝ ⎛ 0 0 1 ⎠ ⎞ ∣ ∣ 2 = 2 1 P ( L x = − 1 ) = ∣ ⟨ L x = − 1∣ L z = − 1 ⟩ ∣ 2 = ∣ ∣ ( 2 1 − 2 1 2 1 ) ⎝ ⎛ 0 0 1 ⎠ ⎞ ∣ ∣ 2 = 4 1
(5) Consider the state
∣ ψ ⟩ = ( 1 2 1 2 1 2 ) |\psi\rangle=\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{2}\\
\frac{1}{\sqrt{2}}
\end{pmatrix} ∣ ψ ⟩ = ⎝ ⎛ 2 1 2 1 2 1 ⎠ ⎞
in the L z L_{z} L z basis.
Since L z 2 L_{z}^{2} L z 2 is measured to be + 1 +1 + 1 , L z L_{z} L z can be + 1 +1 + 1 or − 1 -1 − 1 . The state after the measurement is
∣ ψ ⟩ after = N ( ∣ L z = + 1 ⟩ ⟨ L z = + 1 ∣ + ∣ L z = − 1 ⟩ ⟨ L z = − 1 ∣ ) ∣ ψ ⟩ = N ( ( 1 0 0 ) ( 1 0 0 ) + ( 0 0 1 ) ( 0 0 1 ) ) ( 1 2 1 2 1 2 ) = N ( 1 0 0 0 0 0 0 0 1 ) ( 1 2 1 2 1 2 ) = N ( 1 2 0 1 2 ) = 1 ( 1 2 ) 2 + ( 1 2 ) 2 ( 1 2 0 1 2 ) = 2 3 ( 1 2 0 1 2 ) = ( 1 3 0 2 3 ) \begin{aligned}
|\psi\rangle_{\text{after}}&=\mathcal{N}(|L_{z}=+1\rangle\langle L_{z}=+1|+|L_{z}=-1\rangle\langle L_{z}=-1|)|\psi\rangle\\
&=\mathcal{N}\left(\begin{pmatrix}
1\\0\\0
\end{pmatrix}(1~0~0)+\begin{pmatrix}
0\\0\\1
\end{pmatrix}(0~0~1)\right)\begin{pmatrix}
\frac{1}{2}\\\frac{1}{2}\\\frac{1}{\sqrt{2}}
\end{pmatrix}\\
&=\mathcal{N}\begin{pmatrix}
1&0&0\\
0&0&0\\
0&0&1
\end{pmatrix}\begin{pmatrix}
\frac{1}{2}\\\frac{1}{2}\\\frac{1}{\sqrt{2}}
\end{pmatrix}=\mathcal{N}\begin{pmatrix}
\frac{1}{2}\\0\\\frac{1}{\sqrt{2}}
\end{pmatrix}\\
&=\frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}}\begin{pmatrix}
\frac{1}{2}\\0\\\frac{1}{\sqrt{2}}
\end{pmatrix}\\
&=\frac{2}{\sqrt{3}}\begin{pmatrix}
\frac{1}{2}\\0\\\frac{1}{\sqrt{2}}
\end{pmatrix}\\
&=\begin{pmatrix}
\frac{1}{\sqrt{3}}\\0\\
\sqrt{\frac{2}{3}}
\end{pmatrix}
\end{aligned} ∣ ψ ⟩ after = N ( ∣ L z = + 1 ⟩ ⟨ L z = + 1∣ + ∣ L z = − 1 ⟩ ⟨ L z = − 1∣ ) ∣ ψ ⟩ = N ⎝ ⎛ ⎝ ⎛ 1 0 0 ⎠ ⎞ ( 1 0 0 ) + ⎝ ⎛ 0 0 1 ⎠ ⎞ ( 0 0 1 ) ⎠ ⎞ ⎝ ⎛ 2 1 2 1 2 1 ⎠ ⎞ = N ⎝ ⎛ 1 0 0 0 0 0 0 0 1 ⎠ ⎞ ⎝ ⎛ 2 1 2 1 2 1 ⎠ ⎞ = N ⎝ ⎛ 2 1 0 2 1 ⎠ ⎞ = ( 2 1 ) 2 + ( 2 1 ) 2 1 ⎝ ⎛ 2 1 0 2 1 ⎠ ⎞ = 3 2 ⎝ ⎛ 2 1 0 2 1 ⎠ ⎞ = ⎝ ⎛ 3 1 0 3 2 ⎠ ⎞
where N \mathcal{N} N normalizes the state. The probability of this result is
P ( L z 2 = + 1 ) = P ( L z = + 1 ) + P ( L z = − 1 ) = ∣ ⟨ L z = + 1 ∣ ψ ⟩ ∣ 2 + ∣ ⟨ L z = − 1 ∣ ψ ⟩ ∣ 2 = ∣ ( 1 0 0 ) ( 1 2 1 2 1 2 ) ∣ 2 + ∣ ( 0 0 1 ) ( 1 2 1 2 1 2 ) ∣ 2 = ∣ 1 2 ∣ 2 + ∣ 1 2 ∣ 2 = 1 4 + 1 2 = 3 4 \begin{aligned}
P(L_{z}^{2}=+1)&=P(L_{z}=+1)+P(L_{z}=-1)\\
&=|\langle L_{z}=+1|\psi\rangle|^{2}+|\langle L_{z}=-1|\psi\rangle|^{2}\\
&=\left|(1~0~0)\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{2}\\
\frac{1}{\sqrt{2}}
\end{pmatrix}\right|^{2}+\left|(0~0~1)\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{2}\\
\frac{1}{\sqrt{2}}
\end{pmatrix}\right|^{2}\\
&=\left|\frac{1}{2}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}\\
&=\frac{1}{4}+\frac{1}{2}\\
&=\frac{3}{4}
\end{aligned} P ( L z 2 = + 1 ) = P ( L z = + 1 ) + P ( L z = − 1 ) = ∣ ⟨ L z = + 1∣ ψ ⟩ ∣ 2 + ∣ ⟨ L z = − 1∣ ψ ⟩ ∣ 2 = ∣ ∣ ( 1 0 0 ) ⎝ ⎛ 2 1 2 1 2 1 ⎠ ⎞ ∣ ∣ 2 + ∣ ∣ ( 0 0 1 ) ⎝ ⎛ 2 1 2 1 2 1 ⎠ ⎞ ∣ ∣ 2 = ∣ ∣ 2 1 ∣ ∣ 2 + ∣ ∣ 2 1 ∣ ∣ 2 = 4 1 + 2 1 = 4 3
If L z L_{z} L z is measured after L z 2 L_{z}^{2} L z 2 was measured and L z 2 = + 1 L_{z}^{2}=+1 L z 2 = + 1 was found, the possible outcomes and relative probabilities are:
P ( L z = + 1 ) after = ∣ ⟨ L z = + 1 ∣ ψ ⟩ after ∣ 2 = ∣ ( 1 0 0 ) ( 1 3 0 2 3 ) ∣ 2 = 1 3 P ( L z = 0 ) after = ∣ ⟨ L z = 0 ∣ ψ ⟩ after ∣ 2 = ∣ ( 0 1 0 ) ( 1 3 0 2 3 ) ∣ 2 = 0 P ( L z = − 1 ) after = ∣ ⟨ L z = − 1 ∣ ψ ⟩ after ∣ 2 = ∣ ( 0 0 1 ) ( 1 3 0 2 3 ) ∣ 2 = 2 3 \begin{aligned}
P(L_{z}=+1)_{\text{after}}&=|\langle L_{z}=+1|\psi\rangle_{\text{after}}|^{2}=\left|(1~0~0)\begin{pmatrix}
\frac{1}{\sqrt{3}}\\0\\
\sqrt{\frac{2}{3}}
\end{pmatrix}\right|^{2}=\frac{1}{3}\\
P(L_{z}=0)_{\text{after}}&=|\langle L_{z}=0|\psi\rangle_{\text{after}}|^{2}=\left|(0~1~0)\begin{pmatrix}
\frac{1}{\sqrt{3}}\\0\\
\sqrt{\frac{2}{3}}
\end{pmatrix}\right|^{2}=0\\
P(L_{z}=-1)_{\text{after}}&=|\langle L_{z}=-1|\psi\rangle_{\text{after}}|^{2}=\left|(0~0~1)\begin{pmatrix}
\frac{1}{\sqrt{3}}\\0\\
\sqrt{\frac{2}{3}}
\end{pmatrix}\right|^{2}=\frac{2}{3}
\end{aligned} P ( L z = + 1 ) after P ( L z = 0 ) after P ( L z = − 1 ) after = ∣ ⟨ L z = + 1∣ ψ ⟩ after ∣ 2 = ∣ ∣ ( 1 0 0 ) ⎝ ⎛ 3 1 0 3 2 ⎠ ⎞ ∣ ∣ 2 = 3 1 = ∣ ⟨ L z = 0∣ ψ ⟩ after ∣ 2 = ∣ ∣ ( 0 1 0 ) ⎝ ⎛ 3 1 0 3 2 ⎠ ⎞ ∣ ∣ 2 = 0 = ∣ ⟨ L z = − 1∣ ψ ⟩ after ∣ 2 = ∣ ∣ ( 0 0 1 ) ⎝ ⎛ 3 1 0 3 2 ⎠ ⎞ ∣ ∣ 2 = 3 2
(6) A particle is in a state for which the probabilities are P ( L z = 1 ) = 1 / 4 P(L_{z}=1)=1/4 P ( L z = 1 ) = 1/4 , P ( L z = 0 ) = 1 / 2 P(L_{z}=0)=1/2 P ( L z = 0 ) = 1/2 , and P ( L z = − 1 ) = 1 / 4 P(L_{z}=-1)=1/4 P ( L z = − 1 ) = 1/4 . Suppose it has the following form
∣ ψ ⟩ = C 1 ∣ L z = + 1 ⟩ + C 2 ∣ L z = 0 ⟩ + C 3 ∣ L z = − 1 ⟩ |\psi\rangle=C_{1}|L_{z}=+1\rangle+C_{2}|L_{z}=0\rangle+C_{3}|L_{z}=-1\rangle ∣ ψ ⟩ = C 1 ∣ L z = + 1 ⟩ + C 2 ∣ L z = 0 ⟩ + C 3 ∣ L z = − 1 ⟩
where C 1 C_{1} C 1 , C 2 C_{2} C 2 and C 3 C_{3} C 3 are complex numbers. Then we have
∣ C 1 ∣ 2 = C 1 ∗ C 1 = P ( L z = + 1 ) = 1 4 ⇒ C 1 = 1 2 e i δ 1 ∣ C 2 ∣ 2 = C 2 ∗ C 2 = P ( L z = 0 ) = 1 2 ⇒ C 2 = 1 2 e i δ 2 ∣ C 3 ∣ 2 = C 3 ∗ C 3 = P ( L z = − 1 ) = 1 4 ⇒ C 3 = 1 2 e i δ 3 \begin{aligned}
|C_{1}|^{2}&=C_{1}^{*}C_{1}=P(L_{z}=+1)=\frac{1}{4} \quad &\Rightarrow & \quad C_{1}=\frac{1}{2}e^{i\delta_{1}}\\
|C_{2}|^{2}&=C_{2}^{*}C_{2}=P(L_{z}=0)=\frac{1}{2} \quad &\Rightarrow & \quad C_{2}=\frac{1}{\sqrt{2}}e^{i\delta_{2}}\\
|C_{3}|^{2}&=C_{3}^{*}C_{3}=P(L_{z}=-1)=\frac{1}{4} \quad &\Rightarrow & \quad C_{3}=\frac{1}{2}e^{i\delta_{3}}
\end{aligned} ∣ C 1 ∣ 2 ∣ C 2 ∣ 2 ∣ C 3 ∣ 2 = C 1 ∗ C 1 = P ( L z = + 1 ) = 4 1 = C 2 ∗ C 2 = P ( L z = 0 ) = 2 1 = C 3 ∗ C 3 = P ( L z = − 1 ) = 4 1 ⇒ ⇒ ⇒ C 1 = 2 1 e i δ 1 C 2 = 2 1 e i δ 2 C 3 = 2 1 e i δ 3
where δ 1 \delta_{1} δ 1 , δ 2 \delta_{2} δ 2 and δ 3 \delta_{3} δ 3 are arbitrary real numbers. Therefore, it has the form
∣ ψ ⟩ = e i δ 1 2 ∣ L z = 1 ⟩ + e i δ 2 2 1 / 2 ∣ L z = 0 ⟩ + e i δ 3 2 ∣ L z = − 1 ⟩ |\psi\rangle=\frac{e^{i \delta_1}}{2}\left|L_z=1\right\rangle+\frac{e^{i \delta_2}}{2^{1 / 2}}\left|L_z=0\right\rangle+\frac{e^{i \delta_3}}{2}\left|L_z=-1\right\rangle ∣ ψ ⟩ = 2 e i δ 1 ∣ L z = 1 ⟩ + 2 1/2 e i δ 2 ∣ L z = 0 ⟩ + 2 e i δ 3 ∣ L z = − 1 ⟩
The values of the phases matter when measuring an observable that is incompatible with L z L_{z} L z , as an example:
⟨ L x = 0 ∣ L z = 1 ⟩ = 1 2 ( 1 0 − 1 ) ( 1 0 0 ) = 1 2 ⟨ L x = 0 ∣ L z = 0 ⟩ = 1 2 ( 1 0 − 1 ) ( 0 1 0 ) = 0 ⟨ L x = 0 ∣ L z = − 1 ⟩ = 1 2 ( 1 0 − 1 ) ( 0 0 1 ) = − 1 2 \begin{aligned}
\langle L_{x}=0|L_{z}=1\rangle&=\frac{1}{\sqrt{2}} (1~0~-1)\begin{pmatrix}
1\\0\\0
\end{pmatrix}=\frac{1}{\sqrt{2}}\\
\langle L_{x}=0|L_{z}=0\rangle&=\frac{1}{\sqrt{2}} (1~0~-1)\begin{pmatrix}
0\\1\\0
\end{pmatrix}=0\\
\langle L_{x}=0|L_{z}=-1\rangle&=\frac{1}{\sqrt{2}} (1~0~-1)\begin{pmatrix}
0\\0\\1
\end{pmatrix}=-\frac{1}{\sqrt{2}}
\end{aligned} ⟨ L x = 0∣ L z = 1 ⟩ ⟨ L x = 0∣ L z = 0 ⟩ ⟨ L x = 0∣ L z = − 1 ⟩ = 2 1 ( 1 0 − 1 ) ⎝ ⎛ 1 0 0 ⎠ ⎞ = 2 1 = 2 1 ( 1 0 − 1 ) ⎝ ⎛ 0 1 0 ⎠ ⎞ = 0 = 2 1 ( 1 0 − 1 ) ⎝ ⎛ 0 0 1 ⎠ ⎞ = − 2 1
P ( L x = 0 ) = ∣ ⟨ L x = 0 ∣ ψ ⟩ ∣ 2 = ∣ ( 1 2 0 − 1 2 ) ( e i δ 1 2 e i δ 2 2 e i δ 3 2 ) ∣ 2 = 1 8 ∣ e i δ 1 − e i δ 3 ∣ 2 = 1 8 ( e i δ 1 − e i δ 3 ) ( e − i δ 1 − e − i δ 3 ) = 1 8 ( 1 − e i ( δ 1 − δ 3 ) − e − i ( δ 1 − δ 3 ) + 1 ) = 1 8 ( 2 − 2 ⋅ e i ( δ 1 − δ 3 ) + e − i ( δ 1 − δ 3 ) 2 ) = 1 4 ( 1 − cos ( δ 1 − δ 3 ) ) \begin{aligned}
P(L_{x}=0)&=|\langle L_{x}=0|\psi\rangle|^{2}\\
&=\left|\left(\frac{1}{\sqrt{2}}~0~-\frac{1}{\sqrt{2}}\right)\begin{pmatrix}
\frac{e^{i\delta_{1}}}{2}\\
\frac{e^{i\delta_{2}}}{\sqrt{2}}\\
\frac{e^{i\delta_{3}}}{2}
\end{pmatrix}\right|^{2}\\
&=\frac{1}{8}|e^{i\delta_{1}}-e^{i\delta_{3}}|^{2}\\
&=\frac{1}{8}(e^{i\delta_{1}}-e^{i\delta_{3}})(e^{-i\delta_{1}}-e^{-i\delta_{3}})\\
&=\frac{1}{8}(1-e^{i(\delta_{1}-\delta_{3})}-e^{-i(\delta_{1}-\delta_{3})}+1)\\
&=\frac{1}{8}(2-2\cdot\frac{e^{i(\delta_{1}-\delta_{3})}+e^{-i(\delta_{1}-\delta_{3})}}{2})\\
&=\frac{1}{4}(1-\cos(\delta_{1}-\delta_{3}))
\end{aligned} P ( L x = 0 ) = ∣ ⟨ L x = 0∣ ψ ⟩ ∣ 2 = ∣ ∣ ( 2 1 0 − 2 1 ) ⎝ ⎛ 2 e i δ 1 2 e i δ 2 2 e i δ 3 ⎠ ⎞ ∣ ∣ 2 = 8 1 ∣ e i δ 1 − e i δ 3 ∣ 2 = 8 1 ( e i δ 1 − e i δ 3 ) ( e − i δ 1 − e − i δ 3 ) = 8 1 ( 1 − e i ( δ 1 − δ 3 ) − e − i ( δ 1 − δ 3 ) + 1 ) = 8 1 ( 2 − 2 ⋅ 2 e i ( δ 1 − δ 3 ) + e − i ( δ 1 − δ 3 ) ) = 4 1 ( 1 − cos ( δ 1 − δ 3 ))
It depends on phases and can be measured by experiment.
■ ~\tag*{$\blacksquare$} ■
Exercise 4.2.2 Show that for a real wave function ψ ( x ) \psi(x) ψ ( x ) , the expectation value of momentum ⟨ P ⟩ = 0 \langle P\rangle=0 ⟨ P ⟩ = 0 . (Hint: Show that the probabilities for the momenta ± p \pm p ± p are equal.) Generalize this result to the case ψ = c ψ r \psi=c \psi_r ψ = c ψ r , where ψ r \psi_r ψ r is real and c c c an arbitrary (real or complex) constant. (Recall that ∣ ψ ⟩ |\psi\rangle ∣ ψ ⟩ and α ∣ ψ ⟩ \alpha|\psi\rangle α ∣ ψ ⟩ are physically equivalent.)
Solution. Since ψ ( x ) \psi(x) ψ ( x ) is real, ψ ∗ ( x ) = ψ ( x ) \psi^{*}(x)=\psi(x) ψ ∗ ( x ) = ψ ( x ) .
⟨ P ⟩ = ∫ − ∞ + ∞ ψ ∗ ( x ) ( − i ℏ ∂ ∂ x ) ψ ( x ) d x = − i ℏ ∫ − ∞ + ∞ ψ ( x ) ∂ ∂ x ψ ( x ) d x = − 1 2 i ℏ ∫ − ∞ + ∞ ∂ ∂ x ψ 2 ( x ) d x = − 1 2 i ℏ ψ 2 ( x ) ∣ − ∞ + ∞ = 0 \begin{aligned}
\langle P\rangle&=\int_{-\infty}^{+\infty} \psi^{*}(x)\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x)~dx\\
&=-i\hbar\int_{-\infty}^{+\infty}\psi(x)\frac{\partial}{\partial x}\psi(x)~dx\\
&=-\frac{1}{2}i\hbar\int_{-\infty}^{+\infty}\frac{\partial}{\partial x}\psi^{2}(x)~dx\\
&=-\frac{1}{2}i\hbar \psi^{2}(x)\bigg|_{-\infty}^{+\infty}\\
&=0
\end{aligned} ⟨ P ⟩ = ∫ − ∞ + ∞ ψ ∗ ( x ) ( − i ℏ ∂ x ∂ ) ψ ( x ) d x = − i ℏ ∫ − ∞ + ∞ ψ ( x ) ∂ x ∂ ψ ( x ) d x = − 2 1 i ℏ ∫ − ∞ + ∞ ∂ x ∂ ψ 2 ( x ) d x = − 2 1 i ℏ ψ 2 ( x ) ∣ ∣ − ∞ + ∞ = 0
Since ψ ( x ) → 0 \psi(x)\to 0 ψ ( x ) → 0 , as x → ± ∞ x\to\pm\infty x → ± ∞ .
For general case,
⟨ P ⟩ = ∫ − ∞ + ∞ [ c ψ r ( x ) ] ∗ ( − i ℏ ∂ ∂ x ) [ c ψ r ( x ) ] = ∣ c ∣ 2 ∫ − ∞ + ∞ ψ r ( x ) ( − i ℏ ∂ ∂ x ) ψ r ( x ) d x = ∣ c ∣ 2 ⋅ 0 = 0 \begin{aligned}
\langle P\rangle&=\int_{-\infty}^{+\infty}[c\psi_{r}(x)]^{*}\left(-i\hbar\frac{\partial}{\partial x}\right)[c\psi_{r}(x)]\\
&=|c|^{2}\int_{-\infty}^{+\infty} \psi_{r}(x)\left(-i\hbar\frac{\partial}{\partial x}\right)\psi_{r}(x)~dx\\
&=|c|^{2}\cdot 0\\
&=0
\end{aligned} ⟨ P ⟩ = ∫ − ∞ + ∞ [ c ψ r ( x ) ] ∗ ( − i ℏ ∂ x ∂ ) [ c ψ r ( x )] = ∣ c ∣ 2 ∫ − ∞ + ∞ ψ r ( x ) ( − i ℏ ∂ x ∂ ) ψ r ( x ) d x = ∣ c ∣ 2 ⋅ 0 = 0
■ ~\tag*{$\blacksquare$} ■
Exercise 4.2.3 Show that if ψ ( x ) \psi(x) ψ ( x ) has mean momentum ⟨ P ⟩ , e i p 0 x / ℏ ψ ( x ) \langle P\rangle, e^{i p_{0} x / \hbar} \psi(x) ⟨ P ⟩ , e i p 0 x /ℏ ψ ( x ) has mean momentum ⟨ P ⟩ + p 0 \langle P\rangle+p_0 ⟨ P ⟩ + p 0 .
Solution.
⟨ P ⟩ = − i ℏ ∫ − ∞ + ∞ ψ ∗ ( x ) ∂ ∂ x ψ ( x ) d x ⟨ P ′ ⟩ = − i ℏ ∫ − ∞ + ∞ [ e − i p 0 x / ℏ ψ ∗ ( x ) ] ∂ ∂ x [ e i p 0 x / ℏ ψ ( x ) ] d x = − i ℏ ∫ − ∞ + ∞ [ e − i p 0 x / ℏ ψ ∗ ( x ) ] [ e i p 0 x / ℏ ⋅ i p 0 / ℏ ⋅ ψ ( x ) + e i p 0 x / ℏ ∂ ∂ x ψ ( x ) ] d x = − i ℏ ∫ − ∞ + ∞ e − i p 0 x / ℏ ψ ∗ ( x ) ⋅ e i p 0 x / ℏ ⋅ i p 0 / ℏ ⋅ ψ ( x ) d x − i ℏ ∫ − ∞ + ∞ e − i p 0 x / ℏ ψ ∗ ( x ) ⋅ e i p 0 x / ℏ ∂ ∂ x ψ ( x ) d x = p 0 ∫ − ∞ + ∞ ψ ∗ ( x ) ψ ( x ) d x − i ℏ ∫ − ∞ + ∞ ψ ∗ ( x ) ⋅ ∂ ∂ x ψ ( x ) d x = ⟨ P ⟩ + p 0 \begin{aligned}
\langle P\rangle&=-i\hbar\int_{-\infty}^{+\infty}\psi^{*}(x)\frac{\partial}{\partial x}\psi(x)~dx\\
\langle P^{\prime}\rangle&=-i\hbar\int_{-\infty}^{+\infty}[e^{-ip_{0}x/\hbar}\psi^{*}(x)]\frac{\partial}{\partial x}[e^{ip_{0}x/\hbar}\psi(x)]~dx\\
&=-i\hbar\int_{-\infty}^{+\infty}[e^{-ip_{0}x/\hbar}\psi^{*}(x)][e^{ip_{0}x/\hbar}\cdot ip_{0}/\hbar\cdot\psi(x)+e^{ip_{0}x/\hbar}\frac{\partial}{\partial x}\psi(x)]~dx\\
&=-i\hbar\int_{-\infty}^{+\infty}e^{-ip_{0}x/\hbar}\psi^{*}(x)\cdot e^{ip_{0}x/\hbar}\cdot ip_{0}/\hbar\cdot\psi(x)~dx\\
&~~~~-i\hbar\int_{-\infty}^{+\infty}e^{-ip_{0}x/\hbar}\psi^{*}(x)\cdot e^{ip_{0}x/\hbar}\frac{\partial}{\partial x}\psi(x)~dx\\
&=p_{0}\int_{-\infty}^{+\infty}\psi^{*}(x)\psi(x)~dx-i\hbar\int_{-\infty}^{+\infty}\psi^{*}(x)\cdot\frac{\partial}{\partial x}\psi(x)~dx\\
&=\langle P\rangle+p_{0}
\end{aligned} ⟨ P ⟩ ⟨ P ′ ⟩ = − i ℏ ∫ − ∞ + ∞ ψ ∗ ( x ) ∂ x ∂ ψ ( x ) d x = − i ℏ ∫ − ∞ + ∞ [ e − i p 0 x /ℏ ψ ∗ ( x )] ∂ x ∂ [ e i p 0 x /ℏ ψ ( x )] d x = − i ℏ ∫ − ∞ + ∞ [ e − i p 0 x /ℏ ψ ∗ ( x )] [ e i p 0 x /ℏ ⋅ i p 0 /ℏ ⋅ ψ ( x ) + e i p 0 x /ℏ ∂ x ∂ ψ ( x )] d x = − i ℏ ∫ − ∞ + ∞ e − i p 0 x /ℏ ψ ∗ ( x ) ⋅ e i p 0 x /ℏ ⋅ i p 0 /ℏ ⋅ ψ ( x ) d x − i ℏ ∫ − ∞ + ∞ e − i p 0 x /ℏ ψ ∗ ( x ) ⋅ e i p 0 x /ℏ ∂ x ∂ ψ ( x ) d x = p 0 ∫ − ∞ + ∞ ψ ∗ ( x ) ψ ( x ) d x − i ℏ ∫ − ∞ + ∞ ψ ∗ ( x ) ⋅ ∂ x ∂ ψ ( x ) d x = ⟨ P ⟩ + p 0
■ ~\tag*{$\blacksquare$} ■
4.3 The Schrödinger Equation (Dotting Your i i i 's and Crossing your ℏ \hbar ℏ 's)