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Problem Sheet 1

Introduction and Metric Space

1.1 Topology of Symbols
Exercise 1.1. Classify the following Symbols according to the topology of their pictures:∏

, Σ. Ψ, Φ, Γ, Υ, Ω, Θ, Ξ, ♥
φ, ϕ, π, θ, α, β, γ, µ, τ , δ, ε
+, ×, ⊗, ∇, ∪, ∼, ∝, →

1.2 Fake Soccer!
Exercise 1.2. In Figure 1.1 you can see a soccer ball that I found from the internet. Obviously the careless
designer never learned topology. Explain why.

Figure 1.1: Fake Soccer Ball Figure 1.2: Inscribed Square

1.3 Inscribed Square Pronlem: a Simple Case
Exercise 1.3. Let f : [0, 1] → R be a continuous function with f(0) = f(1) = 0. Consider the simple closed
curve C that consists of the graph of f and the line segment of the x-axis from x = 0 to x = 1. Prove: One can
find four points on C that are the vertices of a square. [Hint: Consider the function g(x) = f(x)− f(x+ f(x)).
See Figure 1.2.]

1.4 Weierstrass’s Counterexample to Dirichlet Principle
Exercise 1.4. For any u ∈ A{C1([−1, 1]) | u(−1) = 0, u(1) = 1}, define

F (u) =

∫ 1

−1

|xu′(x)|2dx.

(1) Prove: For each n ∈ N, the function

un(x) :=
(
sin

nπx

2

)2
χ[0,1/n](x) + χ(1/n,1](x)

1



CHAPTER 1. INTRODUCTION AND METRIC SPACE 2

is an element in A (where χA(x) is the characteristic function of the set A).

(2) Prove: lim
n→∞

F (un) = 0.

(3) Prove: There is no function u ∈ A that attains the minimum of F .

1.5 Pseudo-metric
Exercise 1.5. A pseudo-metric on a set X is a map d : X ×X → [0,+∞) that satisfies

• d(x, x) = 0. [Note: this is weaker than being a metric.]

• d(x, y) = d(y, x).

• d(x, y) + d(y, z) ⩾ d(x, z).

Let X = X/ ∼ be the quotient (i.e. the set of equivalent classes), and let p : X → X be the quotient map.
Prove: there is a unique metric d on X so that

d(x, y) = d(p(x), p(y)).

1.6 Metric-preserving Functions
Let f : [0,+∞) → [0,+∞) be a function (which need not be continuous). We say f is a metric-preserving
function if for any metric space (X, d), the map d̃ : X ×X → R defined by d̃(x, y) := f(d(x, y)) is a metric on
X.

(1) Prove: If f is a metric-preserving function, then f−1({0}) = {0} and f is sub-additive:

f(α+ β) ⩽ f(α) + f(β), ∀α, β ∈ [0,+∞).

(2) Prove: a function f : [0,+∞) → [0,+∞) satisfying f−1({0}) = {0} is metric-preserving if any one of the
following conditions holds:

(a) f is non-decreasing and sub-additive.
(b) f is concave.
(c) There exists constant c > 0 so that for any x > 0, f(x) ∈ [c, 2c].

1.7 Urysohn’s Lemma
Exercise 1.6. Let (X, d) be a metric space. For any subset A ⊂ X, define

dA : X → [0,+∞),

x 7→ dA(x) = inf
a∈A

d(x, a).

Prove:

(1) dA is a continuous function on X.

(2) A is closed if and only if dA(x) = 0 implies x ∈ A.

(3) (Urysohn’s lemma for metric spaces) If A and B are closed subsets in (X, d) and A ∩B = ∅. Then there
exists a continuous function f : X → [0, 1] such that

f ≡ 0 on A, and f ≡ 1 on B
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1.8 Uniform Convergence as a Metric Convergence
Exercise 1.7. Let fn : (X, dX) → (Y, dY ) (n ∈ N) and f : (X, dX) → (Y, dY ) be maps between metric spaces.

(1) Define “uniform convergence”: fn converges uniformly to f on X if . . .

(2) Suppose fn are continuous, and converges to f uniformly. Prove: f is continuous.

(3) On the set Y X = {f : X → Y | f is any map}, define

d(f, g) := sup
x∈X

dY (f(x), g(x))

1 + dY (f(x), g(x))
.

(a) Prove: d is a metric on Y X .
(b) Prove: fn converges to f uniformly if and only if as elements in the metric space (Y X , d), fn converges

to f .
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Topological Spaces

2.1 “Uniform Continuity” is not a Topological Conception
Exercise 2.1. Let (X, dX) and (Y, dY ) be metric spaces. We say a map f : (X, dX) → (Y, dY ) is uniformly
continuous if

∀ε > 0, ∃δ > 0, s.t.dX(x1, x2) < δ ⇒ dY (f(x1), fx2
) < ε.

(1) Prove: d0(x, y) := | arctan(x)− arctan(y)| is a metric on R.

(2) Prove: The metric d0 and the absolute value metric d(x, y) = |x − y| on R are topologically equivalent.
Are they strongly equivalent?

(3) Let f : R → R be the identity map, i.e. f(x) = x. Is f : (R, d) → (R, d0) uniformly continuous?
Is f : (R, d0) → (R, d) uniformly continuous? Conclude that “uniform continuity” is not a topological
conception.

(4) Is “uniform continuity” preserved if we replace metrics dX , dY by strongly equivalent ones? Prove your
conclusion.

[More generally, there is a structure called “uniform structure”, which is a generalization of metric structurem,
so that one can define uniform continuous maps between spaces with uniform structures. For details, c.f. J. L.
Kelley, General Topology.]

2.2 The Product Topology and Product Metrics
Exercise 2.2. (1) Prove Proposition 1.44 (the product topology is a topology).

(2) Let (X, dX) and (Y, dY ) be metric spaces. Endow the product space X × Y with the metric

dX×Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2).

Prove:

(a) If U is open in (X, dX), V is open in (Y, dY ), then U × V is open in (X × Y, dX×Y ).
(b) W is an open set in (X × Y, dX×Y ) if and only if for any (x, y) ∈ W , there exists r > 0 such that

B(x, r) × B(y, r) ⊂ W . [So the metric topology induced by the product metric is the same as the
product topology induced by metric topologies.]

(3) Prove: The same conclusion holds if we replace the metric dX×Y above by

dpX×Y ((x1, y1), (x2, y2)) := (dX(x1, x2)
p + dY (y1, y2)

p)1/p,

where 1 ⩽ p ⩽ +∞. Note: for p = ∞ we define

d∞X×Y ((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)).

4
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2.3 Equivalence of Neighborhoods Axioms and Open Set Axioms:
Proposition 1.37

Exercise 2.3.

(1) Given a neighborhood structure N on X, one can define a topology T via

T = {U ⊂ X : U ∈ N (x) for any x ∈ U}.

Check: T is a topology on X, i.e. it satisfies (O1)-(O3).

(2) Given a topology T on X, one can define, for any x ∈ X,

N (x) = {N ⊂ X : ∃U ∈ T , s.t. x ∈ U and U ⊂ N}.

Check: N is a neighborhood structure on X, i.e. it satisfies (N1)-(N4).

(3) You may have already noticed that in doing part (a), you used only (N1)-(N3). Can we conclude that the
set of axioms (N1)-(N3) is equivalent to the set of axioms (O1)-(O3)?

(4) Prove: the set of axioms (N1)-(N4) is equivalent to the set of axioms (O1)-(O3). Namely, the process
T ⇝ N and N ⇝ T described above are inverse to each other.

2.4 Furstenberg’s Topological Proof of the Infinitude of Primes
Exercise 2.4. For any a, b ∈ Z with b > 0, we define

Na,b := {a+ nb | n ∈ Z}.

(1) Define a topology on Z by

TFurs = {U ⊂ Z | either U = ∅, or ∀a ∈ U, ∃b ∈ Z>0, s.t.Na,b ⊂ U}.

(a) Prove: TFurs is a topology on Z.
(b) Prove: Each Na,b is open.

(c) Prove: Each Na,b is closed. [Hint: Na,b = Z \
b−1⋃
i=1

Na+i,b.]

(d) Let P = {2, 3, . . .} be the set of all prime numbers. Prove:

Z \ {1,−1} =
⋃
p∈P

N0,p.

(e) Conclude that P is not a finite set. [Hint: the set {1,−1} can’t be open.]

(2) Define a function d : Z× Z → R by

d(a, b) =

{
0, a = b

2−τ(a−b), a 6= b

where τ(a− b) is the smallest positive integer that does not divide a− b.

(a) Prove: d is a metric on Z.
(b) Describe the metric balls B(a, r).
(c) Show that the metric topology generated by d is the topology TFurs above.



CHAPTER 2. TOPOLOGICAL SPACES 6

2.5 The Sorgenfrey Line
Exercise 2.5. Endow R with the Sorgenfrey topology

TSorgenfrey = {U ⊂ R | ∀x ∈ U, ∃ε > 0, s.t. [x, x+ ε) ⊂ U}.

(1) Check: TSorgenfrey is a topology.

(2) Prove: Every left-closed-right-open interval [a, b) is both open and closed.

(3) Prove: TSorgenfrey is strictly stronger than the usual topology Tusual on R.

(4) Explore the meaning of convergence in (R,TSorgenfrey).

(5) Recall that a function f : R → R is right continuous if lim
xn→x0+

f(xn) = f(x0). Prove: a function f : R → R
is right continuous if and only if the map f : (R,TSorgenfrey) → (R,Tusual) is continuous. [So people also
call Sorgenfrey topology the right continuous topology.]

(6) [Upper semi-continuous topology] Let (X,T ) be any topological space. We say a function f : X → R is
upper semi-continuous at a point x0 ∈ X if for any ε > 0, there exists a neighborhood U of x0 such that
f(x) ⩽ f(x0) + ε holds for all x ∈ U , and we say f is an upper semi-continuous function if it is upper
semi-continuous everywhere. Construct a new topology Tu.s.c on R so that a function f : X → R is upper
semi-continuous if and only if the map f : (X,T ) → (R,Tu.s.c) is continuous.

2.6 The Pasting Lemma
Exercise 2.6. Let X, Y be topological spaces. Consider a map f : X → Y .

(1) Suppose X = A ∪ B, where A, B are both closed subsets in X. Suppose f |A : A → Y and f |B : B → Y
are continuous. Prove: f : X → Y is continuous.

(2) Show that the same result fails for X =
∞⋃

n=1
An, where each An is closed in X.

(3) Prove: If X =
⋃
α
Uα, where each Uα is open in X, and if f |Uα

: Uα → Y is continuous, then f : X → Y is
continuous.

2.7 Homeomorphisms
Exercise 2.7.

(1) Let N = (0, . . . , 0, 1) be the “North pole” of Sn = {(x1, . . . , xn+1) | x21 + · · · + x2n+1 = 1} ⊂ Rn+1. Show
that Sn \ {N} is homeomorphic to Rn by explicitly construct a homeomorphism. [Hint: stereographic
projection.]

(2) Use Brouwer’s invariance of domain theorem (see the end of Remark 1.58) to prove: If n 6= m, then Rn is
not homeomorphic to Rm.

(3) Prove: If f : X → Y is a homeomorphism, then for any A ⊂ X, f : X \A→ Y \f(A) is a homeomorphism.

(4) Let Homeo(X) be the set of all homeomorphisms from X to X. Prove: Homeo(X) is a group (with respect
to the composition of maps). Moreover, if X and Y are homeomorphic, then the groups Homeo(X) and
Homeo(Y ) are isomorphic.

2.8 Convergence in Measure, Almost Everywhere Convergence
Exercise 2.8. Let X be the set of all bounded measurable functions defined on [0, 1]. For any f , g ∈ X, we
define

d(f, g) =

∫ 1

0

min(|f(x)− g(x)|, 1)dx.

(1) Prove: d is a metric on X.
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(2) Prove: fn ∈ X converges to f in measure if and only if fn converges to f with respect to the metric d.
(So in particular, “convergence in measure” is a topological convergence.)

(3) Prove: almost everywhere convergence is not a topological convergence, i.e. there is no topology on X so
that fn → f a.e. if and only if fn → f in that topology. [Hint: In real analysis, we learned that Riesz’s
theorem, which claims that if fn → f in measure, then there is subsequence fnk

→ f a.e.. Suppose there
is such a topology. Find a sequence fn in X that converges to f in measure, but fails to converge to f
a.e.. Suppose such a topology exists. Since fn fails to converge to f a.e., there is an open neighborhood
U of f so that a subsequence sits outside U . But that subsequence still converges in measure, and thus
has a sub-subsequence that converges a.e. to f , a contradition.]



Problem Sheet 3

Construction of Topology

3.1 Neighborhood Basis
Exercise 3.1. Like a basis, we can define a neighborhood basis (or neighborhood base) as follows: A family
B(x) ⊂ N (x) of neighborhoods of x is called a neighborhood basis at x if for any A ∈ N (x), there exists
B ∈ B(x) such that B ⊂ A.

(1) Express N (x) in terms of a neighborhood basis B(x).

(2) Define a conception of neighborhood sub-basis.

(3) Write down a theorem that characterize the continuity of a map f at a point x via neighborhood basis
and via neighborhood sub-basis, and prove your theorem.

3.2 Topologies on RN

Exercise 3.2. Consider the space of sequences of real numbers,

X = RN = {(x1, x2, . . .) | xn ∈ R}.

On X we have defined three topologies: the box topology Tbox, the product topology Tproduct, and the “uniform
topology” Tuniform induced from the uniform metric

duniform((xn), (yn)) = sup
n∈N

min(|xn − yn|, 1).

(1) Prove: Tproduct ⊂ Tuniform ⊂ Tbox.

(2) One can also regard every element (x1, x2, . . .) in X as a map

f : N → R,
n 7→ xn

and thus identify X with the space of maps M(N,R). Define the pointwise convergence topology Tp.c. on
X, and prove Tp.c. = Tproduct.

(3) Fix two elements (a1, a2, . . .) and (b1, b2, . . .) in X, and define a map

f : X → X,

(x1, x2, . . .) 7→ (a1x1 + b, a2x2 + b, . . .).

Prove that if we endow X with the product topology, then f is continuous. What if we endow X with the
box topology?

3.3 Universality of the Induced and Co-induced Topologies
Exercise 3.3.

(1) Prove Proposition 1.96.

(2) Read Page 38-39 on “co-induced topology” and prove Proposition 1.100.

8
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3.4 “Product Operation” for Topologies is Commutative and Asso-
ciative

Exercise 3.4. Let Xα (α ∈ Λ) be topological spaces. Prove: For any decomposition Λ =
⋃
β

Λβ of the set of

indices Λ (where Λβ ∩ Λβ′ = ∅ for β = β′), the product topological space
∏
α∈Λ

Xα is homeomorphic to the

product topological space
∏
β

( ∏
α∈Λβ

Xα

)
, where each product appeared above is endowed with the product

topology.

3.5 Embedding RP2 into R4

Exercise 3.5. Consider the map
f : S2 → R4,

(x, y, z) 7→ (y2 − x2, xy, xz, yz).

Prove: the image is homeomorphic to RP2.

3.6 Cone and Suspension of Sn

Exercise 3.6. Prove the following by constructing a homeomorphism for each pair of spaces.

(1) C(Sn) ' Bn+1.

(2) S(Sn) ' Sn+1.

(3) Bn \ Sn−1 ' Sn.

3.7 Quotient Map v.s. Open/Closed Map
Exercise 3.7.

(1) Suppose p : X → Y is a surjective continuous map. Prove: If p is either open or closed, then it is a
quotient map.

(2) Construct a quotient map that is neither open nor closed.

(3) Let SO(n) be the special orthogonal group. Define a map

f : SO(n) → Sn−1,

A 7→ Ae1,

where e1 = (0, . . . , 0, 1) is the “North pole vector” on Sn−1.

(a) Prove: f is surjective, continuous and open, and thus is a quotient map.
(b) Consider the natural (right) action of SO(n− 1) on SO(n) by

B ·A := A

(
B 0
0 1

)
, ∀B ∈ SO(n− 1), A ∈ SO(n).

Prove: the orbits of this action are the fibers of the quotient map f .
(c) Conclude that SO(n)/SO(n− 1) ' Sn−1.
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3.8 Covering Space Action
Exercise 3.8. Let G be a group acting on a topological space X. Let Y = X/G be the orbit space, and
p : X → Y be the quotient map. Let U ⊂ X be an open set, such that

g · U ∩ U = ∅, ∀g 6= e ∈ G.

Prove:

(1) V := p(U) is an open set in Y .

(2) For any g ∈ G, the map pg = p ◦ τg : g−1 · U → V is a homeomorphism.



Problem Sheet 4

Continuity

4.1 “Sequential Continuous=Continuous” for (A1) Spaces
Exercise 4.1. Let X be an (A1) space, Y be any topological space. Prove: A map f : X → Y is continuous
at x0 if and only if it is sequentially continuous at x0.

4.2 Locally Finiteness
Let (X,T ) be a topological space.

(1) Let A, B be subsets in X. Prove: A ∪B = A ∪B.

(2) Let Aα be a family of subsets in X. Prove:
⋃
α
Aα ⊂

⋃
α
Aα.

(3) Find an example so that
⋃
α
Aα 6=

⋃
α
Aα for a family of subsets Aα ∈ R.

(4) We say a family {Aα} of subsets in X is locally finite if for any x ∈ X, there exists an open neighborhood
Ux of x so that Aα ∩ Ux 6= ∅ for only finitely many α’s. Prove: If {Aα} is a locally finite family, then⋃
α
Aα =

⋃
α
Aα.

4.3 Characterize Continuity via Interior
Exercise 4.2. In class we proved

A map f : X → Y between two topological spaces is continuous if and only if f(A) ⊂ f(A) holds for any
A ⊂ X.

Apply the idea of “open-closed” duality, write down the corresponding characterization of continuity of f
via the interior operation, and then prove it.

4.4 Convergence by Net
Exercise 4.3. We call (P,�) a directed set if

• (P,�) is a partially ordered set (c.f. Definition 1.84),

• for any α, β ∈ P , there exists γ ∈ P such that α � γ and β � γ.

For a topological space X, a net is a map f : (P,�) → X from a directed set (P,�) to X. We will use the
notation (xα) instead of a map “f : α 7→ xα” if there is no ambiguity. We say a net (xα) converges to x0,
denoted by xα → x0, if for any neighborhood U of x, there is an α ∈ P such that xβ ∈ U holds for any α � β.

(1) Realize N (x) as a directed set. [You need to carefully choose the partial order relation so that it can be
used in part (b) below.]

(2) Prove: x ∈ A if and only if there exists a net (xα) in A which converges to x0.

(3) Prove: A map f : X → Y is continuous if and only if for any net (xα) in X which converges to a limit x0,
the net (f(xα)) in Y converges in Y to f(x0).

11
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4.5 Continuous Maps from Compact Space to Hausdorff Space
Exercise 4.4. Prove Lemma 2.1.20, Corollary 2.1.21 and Proposition 2.1.22.

4.6 Compactness for the “Upper Semi-continuous” Topology
In Exercise 2.5 (6), you constructed the upper semi-continuous topology on R,

Tu.s.c = {(−∞, a) | a ∈ R}.

(1) Is (R,Tu.s.c) compact? sequentially compact? limit point compact?

(2) Describe all compact subsets in (R,Tu.s.c).

(3) State a theorem called “the extremal value theorem for upper semi-continuous functions” and prove it.

4.7 Countably Compact
Exercise 4.5. A topological space X is called countably compact if every countable open covering of X has a
finite subcovering.

(1) Prove: Closed subspace of a countably compact space is countably compact.

(2) Prove: Any countably compact space is limit point compact.

(3) Prove: X is countably compact if and only if it has the nested sequence property: for any nested sequence
of non-empty closed sets F1 ⊃ F2 ⊃ · · · , we have

∞⋂
n=1

Fn 6= ∅.

(4) Prove: Any sequentially compact space is countably compact.

(5) Prove: The continuous image of a countably compact space is countably compact.

4.8 One Point Compactification
Exercise 4.6. Given any topological space (X,T ), we say a compact topological space Y is a compactification
of X if there exists a homeomorphism f : X → f(X) ⊂ Y such that f(X) = Y .

(1) Prove: both S1 and [0, 1] are compactifications of R.

(2) For any non-compact topological space (X,T ), define a topology T ∗ on the set X∗ = X ∪ {∞} by

T ∗ = T
⋃

{X∗}
⋃

{Kc ∪ {∞} | K ⊂ X is closed and compact.}.

Prove: T ∗ is a topology on X∗, and (X∗,T ∗) is a compactification of (X,T ). [This is called the one-point
compactification of (X,T ).]

(3) Prove: the one-point compactification of N is homeomorphic to {0} ∪
{

1
n | n ∈ N

}
(as a subset in R).

(4) Construct a compact Hausdorff topology on any setX. [Hint: start with the discrete topology onX\{x0}.]



Problem Sheet 5

Compactness, Completion, and Lebesgue
Property

5.1 The Topology of the Cantor Set
Exercise 5.1. Recall that the Cantor set C is the following subset of [0, 1],

C = [0, 1] \
∞⋃

n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,
3k + 2

3n

)
.

(1) Prove: Every point in the Cantor set is a limit point.

(2) Prove: As a subset of [0, 1], the Cantor set is nowhere dense.

(3) For any closed subset F ⊂ C, prove: there exists a continuous map f : C → F so that f(x) = x on F .
[Hints: F c is the union of open intervals. Pick an element in each such interval that is not in C, and
“push” points in the intervals to the “boundary points”.]

(4) Define a map
g : {0, 1}N → [0, 1],

a = (a1, a2, . . .) 7→
∞∑
k=1

2ak
3k

.

Prove: g induces a homeomorphism between ({0, 1}N,Tproduct) and C.

(5) Show that there is continuous surjective map from C to [0, 1]2, by showing that

h : {0, 1}N → [0, 1]2,

a = (a1, a2, . . .) 7→

( ∞∑
k=1

a2k−1

2k
,

∞∑
k=1

a2k
2k

)
,

is continuous and surjective. Is h injective?

5.2 Sequentially Compactness for Products
Exercise 5.2.
(1) Let X1, . . . , Xn be sequentially compact topological spaces. Prove: the product space X = X1 × · · · ×Xn

is sequntially compact.

(2) Is X = {0, 1}N sequentially compact when equipped with the box topology Tbox? Prove your claim.

(3) Now suppose (Xn, dn) are compact metric spaces. Define a product metric on X =
∞∏

n=1
Xn via

d((xn), (yn)) :=

∞∑
n=1

dn(xn, yn)

(1 + diam(Xk)) · 2n
.

Prove: The metric topology on X induced by d coincides with the product topology on X.

13
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5.3 Compactness in Order Topology
Exercise 5.3. Let (X,⩽) be a totally ordered set. For any subset A ⊂ X, we say x ∈ X is a least upper bound
of A if x is an upper bound of A, and there is no x′ < x which is an upper bound of A. Now endowed X with
the order topology introduced in Definition 1.85. Prove: X is compact if and only if every subset (including the
empty set ∅) of X has a least upper bound. [Hints: X has a least upper bound implies that X has a maximal
element. ∅ has a least upper bound implies that X has a minimal element. Try to prove that for any sub-base
covering U , there are a < b so that {x | x < b} and {x | x > a} are elements in U , and then apply Alexander
subbase theorem.]

5.4 The Existence of Banach Limit
Exercise 5.4. Consider the vector space of all bounded sequences of real numbers,

X = l∞ = {(a1, a2, . . .) | ai ∈ R and sup
n

|an| <∞}.

On X there is a naturally defined shift operator

T : X → X,

{a1, a2, . . .} 7→ {a2, a3, . . .}.

A mean on X is a linear map L : X → R such that

inf an ⩽ L({an}) ⩽ sup an

holds for all {an} ∈ X. A Banach limit is a mean that is invariant under the shift operator T , i.e. such that
L({an}) = L(T ({an})) holds for all {an} ∈ X.

(1) Define Lm : X → R by Lm({an}) =
1

m

m∑
i=1

ai. Prove: Lm is a mean for each m, and lim
m→∞

|Lm(T ({an}))−

Lm({an})| = 0.

(2) Let M be the set of all means on X. One can regard M as a subset of M(X,R) = RX , equipped with
the product topology. Prove: M is compact. [Hint: M is contained in

∏
{an}∈X

[inf an, sup an].]

(3) Prove: There exists a Banach limit on X. [Hint: Compact implies limit point compact. Use (a).]

(4) What is the Banach limit of a convergent sequence? What is the Banach limit of {0, 1, 0, 1, 0, . . .}?

5.5 Completion of Metric Spaces
Exercise 5.5. Let X be a set, and (Y, dY ) be metric spaces. Consider the space of bounded maps,

B(X,Y ) = {f : X → Y | f(X) is bounded in Y }

(1) Prove: the supremum metric d∞(f, g) := sup
x∈X

dY (f(x), g(x)) is a metric on B(X,Y ).

(2) Prove: If Y is complete, so is (B(X,Y ), d∞).
In what follows, suppose (X, dX) is a metric space, and take Y = R.

(3) Fix a point x0 ∈ X. For any a ∈ X, define a function fa : X → R via fa(x) := dX(x, a) − dX(x, x0).
Prove: fa ∈ B(X,R).

(4) Prove: the map
Φ : (X, d) → (B(X,R), d∞),

a 7→ fa

is an isometric embedding, i.e. dX(a, b) = d∞(fa, fb) for any a, b ∈ X.

(5) Prove: Any metric space (X, dX) admits a completion.

(6) Prove: If (Y1, d1) and (Y2, d2) are two completions of (X, dX), then (Y1, d1) and (Y2, d2) are isometric.
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5.6 From Limit Point Compact to Sequentially Compact
Exercise 5.6. In the proof of Proposition 2.3.25, we only used the following two properties:

• Every x ∈ X has a descending countable neighborhood basis Ux
1 ⊃ Ux

2 ⊃ · · · .

• If x is a limit point of A, then every neighborhood of x contains infinitely many points of A.

As a consequence, there are many other topological spaces in which limit point compact is equivalent to se-
quentially compact:

(1) Prove Proposition 2.3.26.

(2) Prove that in Proposition 2.3.26, one can weaken the Hausdorff condition to the following (T1) condition:
(T1): For any x 6= y in X, there exists open sets U and V in X so that x ∈ U \ V and y ∈ V \ U .

(3) The (T1) condition is equivalent to a sentence on page 1 of today’s notes. Find out it and prove the
equivalence.

5.7 Closed Unit Ball in l2

Exercise 5.7. Consider the metric space l2 given in Example 1.6(3).

(1) Prove: l2 is complete.

(2) Prove: The closed unit ball B(0, 1) and the unit sphere S(0, 1) are non-compact.

(3) Prove: If K ⊂ l2 is compact, then K has no interior point.

5.8 Lebesgue Property
Exercise 5.8. We say a metric space (X, d) has the Lebesgue property if any open covering of X has a positive
Lebesgue number.

(1) Look at our proof of “sequentially compact ⇒ compact” in the proof of Theorem 2.3.28. What did we
really proved? Your answer should be of the form [“condition A”+“condition B” implies compactness],
and thus we have a new characterization of compactness in metric space.

(2) Prove: If (X, dX) has the Lebesgue property, then it is complete.

(3) Prove: (X, dX) has the Lebesgue property if and only if for any metric space (Y, dY ), any continuous map
f : X → Y is uniformly continuous.

(4) Suppose (X, dX) has the Lebesgue property. Prove: If A, B are non-empty disjoint closed subsets in
(X, d), then dist(A,B) := inf{d(x, y) | x ∈ A, y ∈ B} > 0.



Problem Sheet 6

Locally Compact Hausdorff Spaces and
Function Spaces

6.1 More on LCH
Exercise 6.1.

(1) Structure of noncompact LCH

(a) Let K be a compact Hausdorff space, p ∈ K and X = K \ {p} is non-compact. Prove: X is LCH.
(b) Conversely, suppose X be a non-compact LCH. Let X∗ = X∪{∞} be the one-point compactification

of X. Prove: X∗ is compact and Hausdorff.

(2) The evaluation map could fail to be continuous without local compactness. Consider the evaluation map

e : Q× C(Q, [0, 1]) → [0, 1],

(x, f) 7→ e(x, f) = f(x).

(a) Prove: Q is not locally compact.
(b) Prove: for any q1 ∈ Q and any closed subset A ⊂ Q with q1 /∈ A, there is a continuous function

f1 ∈ C(Q, [0, 1]) such that f(q1) = 1, f(A) = 0.
(c) Now let f0 ∈ C(Q, [0, 1]) be the zero map f0(Q) = 0, and take any q0 ∈ Q. Prove: e is not continuous

at (q0, f0) (where we endow C(Q, [0, 1]) with the compact convergence topology). [Hint: For any open
neighborhood U of q0 and any compact set K in Q, there exists q1 ∈ U \K. Construct a continuous
function using (2).]

6.2 More on Compact-open Topology
Exercise 6.2.

(1) Prove Proposition 2.4.22, i.e. (Y, d) is a metric space, then Tc.c. = Tc.o..

(2) Prove Proposition 2.4.23, i.e. if Y is LCH, then the composition map is continuous with respect to Tc.o..

(3) Prove: If X is locally compact and Hausdorff, then

S({x}, U) =
⋃

compact neighborhood K of x

S(K,U).

[Hint for (2) and (3): Use Proposition 2.4.16.]

6.3 Compactly Generated Spaces
Exercise 6.3.

(1) Read the materials on compactly generated spaces (page 99), and prove: any locally compact space is
compactly generated.
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(2) Prove: Any first countable space is compactly generated.

(3) Find a compactly generated space that is not locally compact. [Hint: Exercise 5.2.]

(4) Let (X,T ) be any topological space. Prove: there exists a topology T ′ ⊃ T such that (X,T ′) is
compactly generated, and a set is compact with respect to T ′ if and only if it is compact with respect to
T . [Hint: Construct topology by needs!]

6.4 Applications of Arzela-Ascoli
Exercise 6.4.
(1) Suppose k = k(x, y) ∈ C([0, 1]× [0, 1],R). For any f ∈ C([0, 1],R), define

Kf(x) =

∫ 1

0

k(x, y)f(y)dy.

Prove: K is a compact operator, i.e. it maps any bounded subset in (C([0, 1],R), d∞) into a compact
subset in the same space.

(2) We want to minimize the functional Φ[f ] :=
∫ 1

−1

f(t)dt. Consider the set

F = {f ∈ C([−1, 1], [0, 1]) | f(−1) = f(1) = 1}.

(a) What is inf
f∈F

Φ[f ]? Is the infimum attained?

(b) For any constant C > 0, let
FC = {f ∈ F | |f(x)− f(y)| ⩽ C|x− y|}.

Prove: The infimum inf
f∈FC

Φ[f ] is attained. Can you find the function?

(3) Prove Theorem 2.5.12.

6.5 Topological Algebra
Exercise 6.5. Let X be a topological space. Endow C(X,R) with the compact convergence topology.
(1) Prove: The addition, multiplication and the scalar multiplication

a : C(X,R)× C(X,R) → C(X,R), (f, g) 7→ a(f, g) = f + g,

m : C(X,R)× C(X,R) → C(X,R), (f, g) 7→ m(f, g) = fg,

s : R× C(X,R) → C(X,R), (λ, f) 7→ s(λ, f) = λf

are continuous. (As a consequence, C(X,R) is a topological algebra.)

(2) Prove Proposition 2.6.4 (the closure of a subalgebra of topological algebra is a closed subalgebra).

6.6 Applications of Stone-Weierstrass
Exercise 6.6.
(1) Prove: Any continuous function on [0, 1] can be approximated uniformly by functions of the form

a0 + a1e
x + a2e

2x + · · ·+ ane
nx, n ∈ N.

• As a consequence, prove if f is a continuous function on [0, 1] satisfying∫ 1

0

f(x)enxdx = 0, n = 0, 1, 2, . . . , (*)

then f = 0.
• What if (*) holds only for even n?

(2) Let X, Y be compact Hausdorff spaces. Prove: any f ∈ C(X × Y,R) can be approximated uniformly by
functions of the form

f1(x)g1(y) + f2(x)g2(y) + · · ·+ fn(x)gn(x), n ∈ N,
where fk ∈ C(X,R), gk ∈ C(Y,R).
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6.7 Stone-Weierstrass for Complex-valued Functions
Exercise 6.7.

(1) Prove Theorem 2.6.16 (Stone-Weierstrass for complex-valued functions).

(2) Prove: Any complex-valued continuous function on S1 = R/Z can be approximated uniformly by functions
of the form

n∑
k=−n

ake
−2πikx, n ∈ N.

6.8 Stone-Weierstrass on LCH
Exercise 6.8.

(1) Let X be LCH. Prove: C(X,R) is an algebra.

(2) Prove Theorem 2.6.17 (Stone-Weierstrass theorem on LCH).

(3) Prove: Any f ∈ C0([0,+∞),R) can be approximated uniformly by functions of the form
n∑

k=−n

ake
−kx, n ∈ N.
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General Topology

7.1 Lindelöff Property
Exercise 7.1.

(1) Prove Proposition 2.7.13.

(2) Prove Proposition 2.7.14.

(3) Check: (R,Tcocountable) is Lindelöff but not σ-compact.

(4) Check: The Sorgenfrey line (R,TSorgenfrey) is Lindelöff.

7.2 The Sorgenfrey Plane
Exercise 7.2. Consider the product of two Sorgenfrey lines,

(R2,TSorgenfrey) := (R,TSorgenfrey)× (R,TSorgenfrey),

which is known as the Sorgenfrey plane.

(1) Prove: It is first countable, separable but not second countable.

(2) Prove: Is it Hausdorff?

(3) Consider the subspace A = {(x,−x) | x ∈ R}. Is it closed? What is the induced subspace topology on A?

(4) Prove: It is not Lindelöff.

7.3 Closedness of Graph
Exercise 7.3. Let X, Y be topological spaces, define the graph of a map f : X → Y to be the set

Gf := {(x, f(x)) | x ∈ X} ⊂ X × Y.

(1) Prove: Y is Hausdorff ⇔ for any X and f ∈ C(X,Y ), Gf is closed in X × Y .

(2) Construct a discontinuous function f : R → R whose graph is closed.

(3) Prove: If Y is compact Hausdorff, then f is continuous ⇔ Gf is closed.

7.4 Hereditary Properties
Exercise 7.4. A topological property P is called hereditary if

(X,T ) satisfies P ⇒ Any subspace Y of X satisfies P.

(1) Prove: (A1) and (A2) are hereditary, but (T4) is not hereditary. [Hint: Given any (X,T ), consider
(X ∪ {∞},T ∪ {X ∪ {∞}}).]

19
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(2) Which of the following properties are hereditary:
compact/sequentially compact/locally compact/separable/Lindelöff/(T1)/(T2)/(T3).

(3) A topological property P is called closed hereditary if

(X,T ) satisfies P ⇒ Any closed subspace Y of X satisfies P.

For those non-hereditary properties above determine whether they are closed hereditary.

7.5 Productive Properties
Exercise 7.5. A topological property P is called productive if

Each (Xα,Tα) satisfies P ⇒ (
∏
α

Xα,Tproduct) satisfies P.

(1) Prove: (T1), (T2) and (T3) are productive.

(2) Conversely, if (
∏
α
Xα,Tproduct) is (T1), (T2) or (T3), can we conclude that each (Xα,Tα) is (T1), (T2)

or (T3)?

(3) Is (T4) productive? Is Lindelöff productive?

(4) Prove: separable and metrizable are not productive. What about (A1), (A2)?

(5) Can you introduce a weaker version of productivity, so that those non-productive properties in part (4)
satisfy the weaker one?

7.6 Baire Space
Exercise 7.6. A topological space is called a Baire space if every intersection of a countable collection of open
dense sets in the space is also dense.

(1) Use “open-closed” duality to give an equivalent characterization of Baire space.

(2) Prove: Any complete metric space is a Baire space.

(3) Prove: Any compact Hausdorff space is a Baire space.

(4) Prove: Any locally compact Hausdorff space is a Baire space.

7.7 Application of Urysohn Lemma
Exercise 7.7.

(1) Let X be a compact Hausdorff space, x0 ∈ X, and U is an open neighborhood of x0. Prove: For any
ε > 0 and any continuous function f : X → R, there exists a continuous function g : X → R satisfying all
of the following three conditions:

• sup
x∈X

|g(x)− f(x)| < ε.

• g = f on U c.
• there exists a neighborhood V of x0 such that g(x) ≡ f(x0) on V .

(2) Let X be LCH. Recall

• Cb(X,R) = {f : X → R | f is continuous and bounded}.
• Cc(X,R) = {f : X → R | f is continuous and compactly supported}.
• C0(X,R) = {f : X → R | f is continuous and vanishes at infinity}.

On Cb(X,R) we have a metric d∞(f, g) := sup
x∈X

|f(x)− g(x)|. Prove: The closure of Cc(X,R) in Cb(X,R)

is C0(X,R).
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7.8 Locally Metrizable
Exercise 7.8. A topological space X is said to be locally metrizable if for any x ∈ X, there is a neighborhood
U of x that is metrizable. Prove: If X is compact Hausdorff, then X is metrizable if and only if it is locally
metrizable. [Hint: Cover X by finitely many compact metrizable neighborhood.]
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Compactifications and Paracompactness

8.1 Uniqueness of Extension
Exercise 8.1. Let X, Y be topological spaces, A ⊂ X be a dense subset, and f : A→ Y be a continuous map.

(1) Prove: If Y is a (T2) space, then f admits at most one continuous extension.

(2) Does the same conclusion hold if Y is a (T1) space? If yes, prove it; If no, give a counterexample.

8.2 Tietze Extensions with Restrictions
Exercise 8.2. Let (X,T ) be a (T4) space, A ⊂ X be closed.

(1) Let f : A→ C be a continuous complex-valued function with

|f(x)| ⩽ 1, ∀x ∈ A.

Prove: f can be extended to a continuous function f̃ : X → C so that

|f̃(x)| ⩽ 1, ∀x ∈ X.

(2) Let f : A→ R and g1, g2 : X → R be continuous functions, and suppose

g1(x) ⩽ f(x) ⩽ g2(x), ∀x ∈ A and g1(x) ⩽ g2(x), ∀x ∈ X.

Prove: f can be extended to a continuous function f̃ : X → R such that

g1(x) ⩽ f̃(x) ⩽ g2(x), ∀x ∈ X.

8.3 Retraction
Exercise 8.3. Let X be a topological space, A ⊂ X be a subspace. We say A is a retract of X if there exists
a continuous map r : X → A such that

r(x) = x, ∀x ∈ A.

Such a map r is called a retraction.

(1) Prove: If X is Hausdorff, A is a retract of X, then A is closed.

(2) Prove: A is a retract of X if and only if for any topological space Y , any continuous map f : A→ Y has
an extension f̃ : X → Y .

(3) Suppose X is normal and A is closed. Prove: If Y is a retract of RJ (with product topology, where J is
any set), then any continuous map f : A→ Y admits a continuous extension f̃ : X → Y .

22
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8.4 Different Compactifications
Exercise 8.4. Let X, Y , Z be LCH spaces.
(1) Construct at least three different compactifications of the plane R2.

(2) Prove that the Čech-Stone compactification βX is the largest compactification of X: For any compact
Hausdorff compactification K of X (with an embedding ϕ : X → K), there is a surjective continuous
closed map F : βX → K which extends the embedding ϕ : X → K.

(3) Similarly, prove that the one point compactification X∗ is the smallest compactification of X.

(4) Given any continuous map ϕ : X → Y , we constructed a continuous map βϕ : βX → βY . Prove that the
“lifting” ϕ⇝ βϕ is “functorial” in the following sense:

(a) If IdX is the identity map, then βIdX = IdβX .
(b) If ϕ : X → Y , ψ : Y → Z be continuous maps, then β(ψ ◦ ϕ) = βψ ◦ βϕ.

8.5 Products of Paracompact Spaces
Exercise 8.5. (1) Prove: The Sorgenfrey line is paracompact, while the Sorgenfrey plane is not. [Hint: The

Sorgenfrey plane is not normal.]

(2) Is paracompactness productive? Is it preserved under continuous maps?

(3) Prove: If X is compact, Y is paracompact, then X × Y is paracompact.

8.6 LCH version of P.O.U.
Exercise 8.6. Let X be a locally compact, σ-compact, Hausdorff space, and U = {Uα} is an open cover of X.
Prove
(1) There exists two locally finite open coverings V = {Vn} and W = {Wn} such that

• Wn ⊂Wn ⊂ Vn ⊂ Vn, and Vn is compact,
• For each n, there exists Uα ∈ U such that Vn ⊂ Uα.

(2) Prove Theorem 2.10.15(LCH version of P.O.U.).

8.7 Examples and Non-examples of Topological Manifolds
Exercise 8.7. (1) Prove: Every topological manifold is σ-compact.

(2) Prove: RPn is a topological manifold.

(3) (line with doubled point) Let X = (R × {0, 1})/ ∼, where (x, 0) ∼ (x, 1) for all x 6= 0. Prove: X is (A2)
and locally Euclidian, but not (T2).

(4) (long line) Let Ω be the smallest uncountable well-ordered set. That is, Ω is an uncountable set, and there
is a well-order < on Ω such that for any a ∈ Ω, the set {b ∈ Ω | b < a} is countable. Let L = Ω × [0, 1).
Define an order on L via (a, t) ≺ (b, c) if and only if “a < b” or “a = b and t < s”.
For any x ≺ y in L, we define (x, y) = {z ∈ L | x ≺ z ≺ y}.

(a) Prove: These “intervals” (x, y) form a basis of a topology on L.
(b) Prove: With respect to this topology, L is (T2), locally Euclidean but not (A2). It is called the long

time. [Hint: By the definition of well-order, for any a ∈ Ω, the set {b ∈ Ω | a < b} has a minimal
element, called the successor of a. Define charts on L by ϕ : {a} × (0, 1] ∪ {a′} × (0, 1) → (−1, 1),
ϕ(a, t) = t− 1 and ϕ(a′, t) = t, where a′ is the successor of a.]

8.8 An Application of P.O.U.
Exercise 8.8. Let X be Hausdorff and paracompact, f : X → R be lower semi-continuous and g : X → R
be upper semi-continuous. Moreover, assume f(x) > g(x), ∀x ∈ X. Prove: there exists a continuous function
h : X → R such that f(x) > h(x) > g(x), ∀x ∈ X.
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Connectedness and Path Connectedness

9.1 Connectedness of Subspace
Exercise 9.1. Let (X,T ) be a topological space, and Y ⊂ X be a subspace. Which of the following statements
are equivalent to the fact Y is disconnected?

Prove the equivalence for the correct ones and give counterexamples for the wrong ones:
(1) There exists non-empty sets A, B ⊂ X with A∩B = A∩B = ∅, such that Y = A∪B, where the closure

is taken into be the closure in X.

(2) There exists open sets A, B in X with A∩B ∩ Y = ∅, such that Y ⊂ A∪B and A∩ Y 6= ∅, B ∩ Y 6= ∅.

(3) There exists disjoint open sets A, B in X with A ∩ Y 6= ∅, B ∩ Y 6= ∅, such that Y ⊂ A ∪B.

(4) There exists disjoint closed sets A, B in X with A ∩ Y = ∅, B ∩ Y 6= ∅, such that Y ⊂ A ∪B.

(5) There exists a set A which is both open and closed in X such that A ∩ Y 6= ∅ and A ∩ Y 6= Y .

(6) There is a surjective continuous map f : Y → {0, 1}.

9.2 Connected Components
Exercise 9.2. Let X be a topological space. The connected component containing x ∈ X is defined to be the
maximal connected subsets of X containing x.
(1) Prove: The connected component containing x is the union of all connected subsets of X that contains x.

(2) Prove: Each connected component is a closed subset.

(3) Give an example showing that the connected component need not be open.

(4) (Generalization of Proposition 3.1.8) Prove: If f : X → Y is continuous, then for any subset A of X, the
cardinality of connected components of f(A) is no more than the cardinality of connected components of
A.

(5) (Generalization of Proposition 3.1.18) Denote the connected component of Xα containing xα to be C(xα).
Prove: the connected component of

∏
α
Xα containing the point (xα) is

∏
α
C(xα).

9.3 Non-homeomorphic Spaces
Exercise 9.3.
(1) Show that the following spaces are pairwise non-homeomorphic:

R, Z, S1, R2, [0, 1], [0, 1).

(2) Consider
A = (0, 1) ∪ {2} ∪ (3, 4) ∪ {5} ∪ · · · ∪ (3n, 3n+ 1) ∪ {3n+ 2} ∪ · · · ,
B = (0, 1] ∪ (3, 4) ∪ {5} ∪ · · · ∪ (3n, 3n+ 1) ∪ {3n+ 2} ∪ · · · .

Prove: There exists continuous bijection f : A→ B and continuous bijection g : B → A, however, A and
B are not homeomorphic. [You may compare this with Cantor-Schröder-Bernstein theorem in set theory.]
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9.4 Connected+Suitable Separation Axioms v.s. Countability
Exercise 9.4.

(1) Prove: If (X,T ) is (T1), (T4) and connected, and X contains at least two elements, then X contains
uncountably many elements.

(2) Can we replace (T4) by (T3)?

(3) [The Golomb Space] Define a topology on N>0 as follows: For any coprime positive integers a and b, let
Da,b = N>0 ∩ {a+ bk | k ∈ N⩾0}. Consider the topology TGolomb generated by these Da,b’s. It turns out
that (N>0,TGolomb) is (T2), connected but contains countably elements:

(a) Prove: B = {Da,b | a, b are coprime positive integers} is a basis of TGolomb.
(b) Prove: (N>0,TGolomb) is (T2).
(c) Prove: (N>0,TGolomb) is connected. Is it compact or (T3) or metrizable? [In proving connectedness,

you may need the following consequence of Chinese remainder theorem from number theory: If b1
and b2 are coprime, then Da1,b1 ∩Da2,b2 6= ∅.]

(d) The Dirichlet theorem in number theory asserts that every Da,b (with a, b coprime) contains infinitely
many prime numbers. Explain this using the language of topology.

9.5 Path Connectedness: Examples
Exercise 9.5.

(1) Although looks quite non-obvious, the set R2 −Q2 is path-connected. We give two proofs here:

First proof. Since Q2 is a countable set, for any x ∈ R2 −Q2, there exist uncountably many lines l, s.t.

x ∈ l ⊂ R2 −Q2.

Now for x 6= y ∈ R2 − Q2, pick two such lines, one contains x and the other contains y. such that they
are not parallel. Now you can connect x to the intersection point through the first line, then to y through
the second line.

Second proof. Suppose (x1, y1), (x2, y2) ∈ R2 − Q2. If x1, x2 ∈ R − Q, then we pick y0 ∈ R − Q, and
connect (x1, y1) to (x1, y0) through the line x = x1, and connect (x1, y0) to (x2, y0) through the line
y = y0, and finally connect (x2, y0) to (x2, y2) through the line x = x2. Similar arguments holds if x1,
y2 ∈ R−Q or y1, y2 ∈ R−Q or x2, y1 ∈ R−Q.

It turns out that each proof can be extended to prove a more general result on path-connectedness:

Proposition 9.1. Let S ⊂ Rn be . . . then Rn − S is path connected.

Proposition 9.2. Let X, Y are path-connected, and . . .

Complete the full statements.

(2) Show that the topological space

(X = {v, s},T = {∅, {s}, {v, s}})

is path-connected.

9.6 Locally Connectedness
Exercise 9.6.

(1) Define the conception:

Definition 9.1. We say a topological space X is locally connected if . . .

(2) Consider (R,Tcocountable). Is it connected? locally connected? path connected? locally path connected?
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(3) For simplicity, let’s denote

C = connected, LC = locally connected,
PC = path connected, LPC = locally path connected.

Give examples in region 1-6 for the following picture: (the remaining two parts are more complicated.
You can try if you want to challenge yourself.)

C

PC

LC

LPC

3

1

2

6

5

(4) Prove: If X is compact and locally connected, then X has finitely many connected components. Can we
remove the locally connectedness condition?

(5) Prove: X is locally connected if and only if for any open set U in X, any connected component of U is
open. (In particular, any connected component of a locally connected space is open.)

(6) Suppose X is locally connected, f : X → Y is continuous. Prove: if f is either open or closed, then f(X)
is locally connected.
Can we remove the assumpotion “f is either open or closed”?

9.7 Components and Path Components
Exercise 9.7.

(1) Find the components and path component for the following spaces:

(a) The Sorgenfrey line.
(b) (R,Tcocountable).
(c) (RN,Tuniform).

(2) Prove Proposition 3.2.22 and Proposition 3.2.23, namely, π0 and πc are functors.

9.8 Components of Topological Groups
Exercise 9.8. Let G be a topological group.

(1) Prove: For any normal subgroup N of G, the quotient group G/N is a topological group.

(2) Prove: π0(G), πc(G) are both topological gorups. What’s the relation between these two groups?

(3) Are π0(G) and πc(G) Hausdorff spaces?

(4) Find the relations between π0(G1 ×G2) and π0(G), π0(G2), where G1, G2 are topological groups.
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Homotopy and the Fundamental Group

10.1 Constructing Homotopies
Exercise 10.1.
(1) Prove Proposition 3.3.3 (composition, pull-back and push-forward).

(2) Prove that “homotopy equivalence between topological spaces” is an equivalence relation (Remark 3.3.9(3)).

(3) Prove Proposition 3.3.17(1) and (3).

10.2 Maps to Sn

Exercise 10.2.
(1) Prove: Any non-surjective continuous map f : X → Sn is null-homotopic.

(2) Let f, g : X → Sn be continuous maps. Suppose they are never anti-podal, i.e. g(x) 6= −f(x) holds for
all x. Prove: f is homotopic to g.

(3) Let Bn+1 be the closed unit ball in Rn+1. Prove: There exists a retraction f ∈ C(Bn+1, Sn) if and only if
IdSn is null-homotopic. [Hint: For “only if” part, use the fact Bn+1 is convex; for “if” part, use the fact
“Bn+1 is the cone over Sn”.]

10.3 Deformation Retact
Exercise 10.3. We say A is a weak deformation retract of X if there exists a retraction r : X → A so that IdX
is homotopic to ι ◦ r : X → X, where ι : A ↪→ X is the inclusion map. In other words, A is a weak deformation
retract of X if there exists a continuous map (called a weak deformation retraction) F : [0, 1] ×X → X such
that

F (0, x) = x, F (1, x) ∈ A, ∀x ∈ X and F (1, a) = a, ∀a ∈ A.

A weak deformation retraction F is called a strong deformation retraction if
F (t, a) = a, ∀a ∈ A, ∀t ∈ [0, 1].

[In some books, people call weak deformation retract defined above a deformation retract, while in some other
books (includes Munkres’s book and Hatcher’s book) people call strong deformation retract defined above a
deformation retract.]
(1) Construct a strong deformation retraction Rn+1 \ {0} to Sn.

(2) Construct a strong deformation retraction from T2−{pt} (i.e. the torus with one point removed) S1 ∨S1

(i.e. “Figure 8”).

(3) Prove: If A ⊂ X is a weak deformation retract, then A ∼ X.

(4) [Compare with Exercise for Section 2.9] Prove: A ⊂ X is a weak deformation retract of X if and only if
it satisfies the following two properties:

• For any topological space Y , any continuous map f : A→ Y has a continuous extension f̃ : X → Y .
• For any topological space Y and any continuous maps f, g : X → Y , if f |A is homotopic to g|A, then
f is homotopic to g.
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10.4 Contractible Spaces
Exercise 10.4.

(1) Prove that the following are equivalent:

(a) X is contractible.
(b) X is homotopy equivalent to a point.
(c) X weak deformation retracts to a point. [However, there are examples of topological spaces that are

contractible but do not strong deformation retract to any point (c.f. Hatcher, Algebraic Topology,
Exercise 0.6).]

(2) Recall that the (topological) cone C(X) of any space topological space X is

C(X) = X × [0, 1]/X × {0}.

(a) Prove: For any X, the topological cone C(X) is contractible.
(b) Let Y be any topological space, and f ∈ C(X,Y ) be a continuous map. Prove: f is null-homotopic

if and only if f has a continuous extension f̂ : C(X) → Y .
(c) Suppose Brouwer’s fixed point theorem holds, i.e. any continuous map f : Bn → Bn has a fixed

point (that is, a point p with f(p) = p). Prove: Sn−1 is not contractible.
(d) Find “(Bing’s) house with two rooms” from literature/internet and show that it is contractible.

10.5 Simply Connected
Exercise 10.5.

(1) Let X be path connected. Prove that the following statements are equivalent:

(a) X is simply connected, i.e. π1(X) = {e}.
(b) Any loop in X can be continuously deformed to a point in X.
(c) For any x0, x1 ∈ X, any two paths γ1, γ2 ∈ Ω(X;x0, x1) are path homotopic.

(2) Show that “simply connectedness” is a topological property. Is it multiplicative? preserved under contin-
uous maps? hereditary?

10.6 The Fundamental Group of the Product Space
Exercise 10.6.

(1) Prove: π1(X × Y, (x0, y0)) ' π1(X,x0)× π1(Y, y0).

(2) Write down a formula for the fundamental group of an arbitrary product, π1
(∏

α
Xα, (xα)

)
, and prove

your formula. [Warning: for infinitely many groups Gα, there are two ways to “multiply” them together:
the direct sum

⊕
α
Gα and the direct product

⊗
α
Gα.]

10.7 Base Point Change Isomorphism
Exercise 10.7. Let X be path connected, x0, x1 ∈ X. We have seen in Proposition 3.4.9 that any path λ from
x0 to x1 induces a group isomorphism Γλ : π1(X,x1) → π1(X,x2).

(1) Suppose λ1 is a path form x0 to x1, and λ2 is a path from x1 to x2. Prove: Γλ1∗λ2
= Γλ2

◦ Γλ1
.

(2) Prove: π1(X,x0) is abelian if and only if for any two paths λ1, λ2 from x0 to x1, we have Γλ1
= Γλ2

.

(3) SupposeX, Y are path connected, and f ∈ C(X,Y ). I have a vague idea that the group homomorphism f∗ :
π1(X,x0) → π1(Y, f(x0)) is independent of the choice of x0. Please write down an explicit formula/rigorous
statement and prove it.
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10.8 The Fundamental Group of Topological Groups
Exercise 10.8. Let G be a topological group. We want to prove π1(G, e) is an abelian group. There is a
one-sentence proof:

Topological groups are group objects in the category T OP , so under the functor π1 (which preserves prod-
ucts), they become group objects in the category GROUP , which are abelian groups.

Unfortunately, I don’t understand that fancy proof. So I want more elementary proofs. In what follows we
give two proofs.

We let γ1, γ2 be two loops in G based at e.

(1) (First proof) Denote by γe the constant loop at e. Check:

F (s, t) = (γ1 ∗ γe)
(
max

(
0, t− s

2

))
• (γe ∗ γ2)

(
min

(
1, t+

s

2

))
is a path homotopy between γ1 ∗ γ2 and γ2 ∗ γ1, where • is the group multiplication.

(2) (Second proof) Construct explicit path homotopies to verify

(a) γ1(t) • γ2(t) ∼ γ2(t) • γ1(t);
(b) (γ1 ∗ γ2)(t) ∼ γ1(t) • γ2(t).

[Hint: γ1 ∗ γ2 = (γ1 ∗ γe) • (γe ∗ γ2).]
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The Fundamental Group and Van Kam-
pen’s Theorem

11.1 More Fundamental Groups
Exercise 11.1. Find the fundamental groups of the following spaces:

(1) Rn+k \ (Rn × {(0, . . . , 0)}) (k ⩾ 2)

(2) R3 \ Z3

(3) S2 ∨ S2 (See section 1.4 for the definition of the wedge product)

(4) S1 ∨ S2 [Hint: use the method of the proof of Proposition 3.5.1.]

(5) {(x, y, 0) | x, y ∈ R} ∪ {(0, y, z) | y2 + z2 = 1, z ⩾ 0}

(6) R3 \ ({(0, 0, z) | z ∈ R} ∪ {(x, y, 0) | x2 + y2 = 1})

(7) R3 \ {(x, y, 0) | x2 + y2 = 1}

(8) R3 \ {(0, 0, 0)} ∪ {(1, 1, z) | z ∈ R}

11.2 Maps with Trivial Induced Homomorphism
Exercise 11.2.

(1) Suppose h : S1 → X is a continuous map. Prove: The following are equivalent

(a) The induced homomorphism h∗ : π1(S
1, 1) → π1(X,h(1)) is the trivial homomorphism (i.e. h∗([γ]p) =

e holds for all [γ]p ∈ π1(S
1, 1)).

(b) h is null homotopic.
(c) h can be extended to a smooth map H : D → S1.

(2) Now suppose X = S1. Prove: (a)-(c) are equivalent to

(d) h can be lifted to a continuous map h̃ : S1 → R so that p ◦ h̃ = h.

(3) Read the proof of Borsuk-Ulam theorem (in which (a)⇒(d) is used) and the proof of pancake theorem on
page 220-221.

11.3 The Degree for Maps Between the Circle
Exercise 11.3. For any continuous map f : S1 → S1, there exists n ∈ Z such that f∗([γ1]p) = [γn]p. The
integer n is called the degree of the map f , and is denoted by deg(f).

(1) Prove: If f ∈ C(S1, S1) is not surjective, then deg(f) = 0.

(2) Prove: If f, g ∈ C(S1, S1), then deg(f ◦ g) = deg(f) deg(g).
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(3) Prove: f is homotopic to g if and only if deg(f) = deg(g).

(4) Read the following paragraph which gives a descriptive definition of the winding number:
Suppose γ : S1 → R2 is a continuous map and p /∈ Im(γ). The winding number W (γ, p) of the closed
curve γ around the point p is defined to be the integer representing the total number of times that curve
travels counterclockwise around the point.
Use the language of mapping degree to give a rigorous definition of winding number W (γ, p).

11.4 Not-so-fundamental Group
Exercise 11.4. Let X be a path connected topological space, and x0 ∈ X be a base point. Given any two loops
γ0, γ1 based at x0, we define a pseudo-homotopy between γ0 and γ1 to be a map [not necessary continuous]
F : [0, 1]× [0, 1] → X, s.t.

• For any fixed t, the map γt(s) := F (t, s) is continuous in s.

• For any fixed s, the map λs(t) := F (t, s) is continuous in t.

• For any s, F (0, s) = γ0(s), F (1, s) = γ1(s).

• For any t, F (0, t) = F (t, 1) = x0.

We define the “Not-so-fundamental group” of X at x0 to be the pseudo-homotopy classes.

(1) Show that the “Not-so-fundamental group” of S1 is the trivial group {e}.

(2) Show that the “Not-so-fundamental group” is not so interesting, since it is always the trivial group {e}.

(3) In proving π1(S1) ' Z, where did we use the continuity of the homotopy?

11.5 Abelianization
Exercise 11.5. Let G be a group.

(1) Let [G,G] be the subgroup of G that is generated by all elements of the form xyx−1y−1 for all x, y ∈ G.
Prove: [G,G] is a normal subgroup of G.

(2) Prove: The group Ab(G) := G/[G,G] is abelian (called the abelianization of G).

(3) Prove: The abelianization defines a functor from GROUP to ABELGROUP .

(4) What is the abelianization of Z ∗ · · · ∗ Z?

(5) Prove: Ab(〈a1, b1, . . . , an, bn | a1b1a−1
1 b−1

1 · · · anbna−1
n b−1

n = 1〉) = Z2n.

(6) Prove: Ab(〈a1, . . . , an | a21 · · · a2n = 1〉) = Zn−1 × Z2.

11.6 The Wedge Sum of Circles
Exercise 11.6.

(1) Finite wedge sum and applications.

(a) Prove: π1(S1 ∨ S1 ∨ · · · ∨ S1) ' Z ∗ Z ∗ · · · ∗ Z.
(b) What is the fundamental group of R2 − {finitely many points}?
(c) What is the fundamental group of R2 − Z2?
(d) What is the fundamental group of the set R3 − {finitely many lines passing 0}?
(e) A group is called finitely presented if it has a presentation G = 〈S | R〉 where both S and R are finite

sets. Prove: any finitely presented group is the fundamental group of some compact Hausdorff space.
[Hint: First construct a wedge sum of circles with fundamental group 〈S〉, then for each element in
R attach a disk to kill the relation.]

(2) Infinite wedge sum.
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(a) Let X =
⋃
n⩾1

Cn, where Cn is the circle in R2 of radius n centered at (n, 0). Compute π1(X).

(b) Let Y = {(x, 0) | x ∈ R} ∪
⋃
n⩾1

C̃n, where C̃n is the circle in R2 of radius 1/3 centered at (n, 1/3).

Compute π1(Y ). Are X and Y homeomorphic? homotopic equivalent?
(c) Let Z =

⋃
n⩾1

C1/n, where C1/n is the circle of radius 1/n centered at (1/n, 0). Prove: There is a

surjective homeomorphism from π1(Z) to the direct product
∏
n⩾1

Z. As a consequence, π1(Z) contains

uncountably many elements [So Z is not homotopy equivalent to X or Y ].
(d) Use (c) to prove: π1(R2 \Q2) contains uncountably many elements.

11.7 Application of van Kampen
Exercise 11.7. Use van Kampen theorem to compute the fundamental group of

(1) RP2.

(2) The Klein bottle.

(3) The n-fold dunce cap. [Split the boundary circle of a closed disk into n parts (by n red dots), and identify
the boundary segments according to the picture below (but keep the interior of the disk unchanged).]

a a

b

b

The Klein Bottle

a

a
a

a

a

a

a
a

a

The n-fold Dunce Cap

(4) Prove: The fundamental group of Σg = T2# · · ·#T2︸ ︷︷ ︸
g

is given by

π1(Σg) ∼= 〈a1, b1, . . . , ag, bg | a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1〉.

(5) Remove k small disjoint discs from Σg and denote the resulting space by Σg,m. Compute π1(Σg,m).

(6) Compute the fundamental group of RP2# · · ·#RP2.

11.8 The Fundamental Group of Topological Manifolds
Exercise 11.8. Let X, Y be connected topological manifolds.

(1) Suppose dimX > 2. Prove: For any point x ∈ X, π1(X) ' π1(X \ x).

(2) Prove: π1(X ∨ Y ) ' π1(X) ∗ π1(Y ).

(3) Suppose dimX = dimY > 2. Prove: π1(X#Y ) ' π1(X) ∗ π1(Y ).

(4) Prove: The fundamental group of any topological manifold is countable (i.e. contains only countably
many elements). [Hint: Cover X by countably many open sets Ui that are homeomorphic to Euclidean
balls. Pick a point from each Ui and from each component of all possible Ui ∩ Uj . Try to show that each
loop is path homotopic to loops consisting of segments connecting the chosen points.]
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Covering Spaces

12.1 Products of Coverings
Exercise 12.1.

(1) Prove: If X is connected, X̃ 6= ∅, then p is surjective, and the cardinality of p−1(x) is independent of x.

(2) Prove: If p : X̃ → X and p′ : X̃ ′ → X are covering maps, so is their product p× p′ : X̃ × X̃ ′ → X ×X ′.

(3) Let p : R → S1 be the standard covering map. Prove: The infinite product
∏
n∈N

p :
∏
n∈N

R →
∏
n∈N

S1 is not

a covering map.

12.2 Fundamental Groups of Covering Spaces

Exercise 12.2. Suppose X, X̃ are path-connected, p : X̃ → X is a covering map, and p(x̃0) = x0.

(1) Suppose γ is a loop in X based at x0. Prove: γ can be lifted to a loop in X̃ based at x̃0 if and only if
[γ] ∈ p∗(π1(X̃, x̃0)).

(2) Prove: the index of the subgroup p∗(π(X̃, x̃0)) in π1(X,x0) is the cardinality of p−1(x0).

(3) Prove: If the base space X is simply connected, then p is a homeomorphism.

(4) Suppose x̃1 ∈ p−1(x0). Prove: as subgroups of π1(X,x0), the two groups p∗(π1(X̃, x̃0)) and p∗(π1(X̃, x̃1))
are conjugate to each other.

12.3 Properly Discontinuous Actions
Exercise 12.3.

(1) Let G = 〈a, b | a−1bab = 1〉. Consider the action of G on R2 generated by

a · (x, y) := (−x, y − 1), b · (x, y) = (x+ 1, y).

(a) Show that this action is properly discontinuous, and the quotient space is the Klein bottle. What is
the fundamental group of the Klein bottle?

(b) Also check that the quotient space in Example 3.7.6 is the Klein bottle, and thus T2 is a double
covering of the Klein bottle.

(2) Suppose group G acts on X̃. We say the action is free if for any g 6= e and any x ∈ X̃, g · x 6= x.
Prove: If X̃ is Hausdorff, G is a finite group, and the G-action on X̃ is free, then the action is properly
discontinuous.

(3) More generally, let X̃ be a LCH space. Suppose the G-action on X̃ is free, and satisfies the following
condition (known as proper action): for any compact subset C ⊂ X̃, the set {g | g · C ∩ C 6= ∅} is finite.
Prove: the G-action is properly discontinuous, and X̃/G is a LCH space. [Hint: By locally finiteness, for
any compact C,

⋃
g
g · C is closed.]
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12.4 SU(2) and SO(3)

Exercise 12.4. Let SU(2) be the special unitary group, i.e. the group of 2×2 unitary matrices with determinant
1, and SO(3) the special orthogonal group, i.e. the group of 3× 3 orthogonal matrices with determinant 1.

(1) Prove: SU(2) is homeomorphic to S3 (and thus is simply connected).

(2) Prove: SU(2) is a double covering of SO(3) (and thus SO(3) ' RP3).

(3) What is the fundamental group of SO(3)?

12.5 Covering of Covering Space
Exercise 12.5. Let X, Y , Z be path-connected and locally path-connected spaces, and f : X → Y , g : Y → Z
be continuous maps.

(1) Suppose both g and g ◦ f are covering maps. Prove: f is a covering map.

(2) Suppose both f and g ◦ f are covering maps. Prove: g is a covering map.

(3) Suppose f is a covering, and g is finite covering. Prove: g ◦ f is a covering.

(4) Suppose f and g are covering, and suppose Z is semi-locally simply connected. Prove: g ◦ f is a covering.

(5) Let X be the second place below, Y be the first space below, and Z be the Hawaii earing. Construct a
natural covering map g : Y → Z, and a natural double covering map f : X → Y (as a double covering),
so that the composition g ◦ f is not a covering map. [So in general the composition of covering maps may
fail to be a covering map.]

· · · · · ·

12.6 Classify Covering Spaces
Exercise 12.6.

(1) Find all path connected covering spaces of S1 ∨ S2.

(2) Find all path connected covering spaces of T2 = S1 × S1.
[You may use the fact that the subgroups of Z2 are

• {(0, 0)},
• {k(p, q) | k ∈ Z} (where (p, q) ∈ Z2)
• {k1(p, q) + k2(r, s) | k1, k2 ∈ Z} (where (p, q), (r, s) ∈ Z, and ps− qr 6= 0).]
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12.7 Covering of Topological Groups and Manifolds
Exercise 12.7.

(1) Let G be a topological group which is path-connected and locally path-connected.

(a) Suppose G̃ is path-connected, and let p : G̃ → G be a covering map. Fix an element ẽ ∈ p−1(e).
Define a map m : G̃× G̃→ G by

m(ã, b̃) := p(ã) · p(b̃)

Prove: m can be lifted to a map m̃ : G̃× G̃→ G̃ with m̃(ẽ, ẽ) = ẽ.
(b) Prove: Any covering space of a topological group is a topological group.

(2) Let M be a topological manifold.

(a) Prove: Any topological manifold admits a universal covering.
(b) Prove: Any covering space of a topological manifold is still a topological manifold. [It follows that

any Lie group admits a universal covering which is still a Lie group. This fact plays an important
role in classifying Lie groups.] [Hint: What do we know about the fundamental group of a topological
manifold?]

12.8 Deck Transformation

Exercise 12.8. Let p : (X̃, x̃0) → (X,x0) be a covering. Its Deck transformation group is

Aut(p) := {h : X̃ → X̃ | h is a covering space isomorphism}.

(1) For each path connected covering space of S1, find its Deck transformation group.

(2) Below are two covering spaces of S1 ∨ S1. Find their Deck transformation groups.

x̃0

α

α

β β

x̃0

α

α

β

β

β α

(3) Suppose G acts on X̃ which is path-connected, and suppose the action is properly discontinuous. Prove:
G is the Deck transformation group of the covering p : X̃ → X = X̃/G.

(4) Let p : (X̃, x̃0) → (X,x0) be a universal covering. Define an action of G = π1(X,x0) on X̃, and prove
that the action you defined is properly discontinuous.
[Thus the Deck transformation group of the universal covering is π1(X,x0).]
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Brouwer’s Fixed Point Theorem and In-
variance of Domain Theorem

13.1 Applications of Brouwer’s Fixed Point Theorem
Exercise 13.1.

(1) [A Special Case of Poincaré-Hopf Theorem, proved by Hadamard] Let f : Bn → Rn be a continuous map
(i.e. f is a vector field on Bn) such that x · f(x) > 0 for all x ∈ Sn−1 = ∂Bn. Prove: there exists x ∈ Bn

such that f(x) = 0.

(2) [Poincaré-Bohl] Let f : Bn → Rn be a continuous map such that f(x) /∈ {αx | α > 0} for any x ∈ Sn−1.
Prove: there exists x ∈ Bn such that f(x) = 0.

(3) [Perron-Frobenius] Any n × n real matrix with positive entries has a positive eigenvalue, and the corre-
sponding eigenvector can be chosen to have strictly positive entries.

(4) [Kuratowski-Steinhuas] Let f : Bn → Bn be a continuous map such that f(Sn−1) ⊂ Sn−1, and suppose
for any x ∈ Sn−1, f(x) 6= x. Prove: f(Bn) = Bn.

13.2 Brouwer’s Fixed Point Theorem, 2nd Version
Exercise 13.2. Let K ⊂ Rn be any non-empty compact convex subset.

(1) Suppose K has non-empty interior. Prove: K is homeomorphic to Bn.

(2) Prove: K has non-empty interior if and only if K is not contained in a proper hyperplane (i.e. a set of
the form x0 + V , where V ⊂ Rn is a linear subspace).

(3) Prove Theorem 4.1.5.

13.3 Poincaré-Miranda Theorem
Exercise 13.3. The following theorem was first announced by H. Poincaré in 1883, which can be viewed at
first glance as a higher dimension generalization of intermediate value theorems. Miranda showed in 1940 that
the theorem was equivalent to the Brouwer’s fixed point theorem.

Poincaré-Miranda Theorem. Let f = (f1, . . . , fn) : [0, 1]
n → Rn be continuous. Suppose for any 1 ⩽ i ⩽ n,

we have
fi ⩽ 0 on {x ∈ [0, 1]n | x0 = 0},
fi ⩾ 0 on {x ∈ [0, 1]n | xi = 1}.

Then there exists p ∈ [0, 1]n such that f(p) = 0.

(1) Prove Poincaré-Miranda theorem via Brouwer’s fixed point theorem.
[Hint: Let r : R → [0, 1] be the retraction with r((−∞, 0) = 0, r((1,+∞)) = 1 and let r(x) =
(r(x1), . . . , r(xn)). Consider h(x) = r(x) − f(r(x)). Then h maps into a large ball into itself. Show
that the fixed point of h lies in [0, 1]n.]

(2) Prove Brouwer’s fixed point theorem via Poincaré-Miranda theorem.
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13.4 Applications of Brouwer’s Invariance of Domain Theorem
Exercise 13.4.

(1) Prove: there is no injective continuous map f : Sn → Rn.

• Then show that there is no proper subset of Sn that is homeomorphic to Sn itself.

(2) Show that conception of the boundary point is well-defined in the definition of “topological manifold with
boundary”.

• Then show that if X is a topological manifold with boundary of dimension n, then its boundary ∂X
is a topological manifold of dimension n− 1.

13.5 A Story about Love and Hates
Exercise 13.5. In a certain country there are two towns, A and B, and two disjoint roads, α and β, connecting
them. Two lovers in town A must travel to town B, one by road α and one by road β. So great is the force
of their love that if at any instant they are separated by ten kilometers or more, they will surely die. There
are also two enermies, one lives in town A and must travel to town B by road α, while the other lives in town
B and must travel to town A by road β. So great is the force of their hatred that if at any instant they are
separated by ten kilometers or less, they will surely die.

(1) Show that at least two people will end up dead by converting the previous problem to the following one:
Let γ1 : [0, 1] → [0, 1]2 be a path from the point (0, 0) to the point (1, 1), and γ2 : [0, 1] → [0, 1]2 be a path
from the point (0, 1) to the point (1, 0).

Claim: γ1 and γ2 must intersect.

(2) Here is a fake proof the claim above:
Since γ1 is a path in the square [0, 1]2 and since paths are continuous, we may find a continuous function
f : [0, 1] → [0, 1] so that the image of the path γ1 is the graph of f . Similarly we may find a continuous
function g whose graph is the path γ2. By assumption, we have f(0) = 0, f(1) = 1 and g(0) = 1, g(1) = 0.
Consider the function h(x) := f(x)− g(x). Then h is a continuous function with h(0) = −1, h(1) = 1, so
there is x0 ∈ [0, 1] so that h(x0) = 0, i.e. f(x0) = g(x0). So the paths γ1 and γ2 intersects at the point
(x0, f(x0)).
Find the mistake in this proof.

13.6 Brouwer’s Invariance of Domain Theorem Revisited
Exercise 13.6.

(1) (Higher dimensional analogue of “arc non-separation” theorem) Prove: If K ⊂ Rn is compact and is a
retract of Rn, then Rn \K is connected.

(2) Let D = {x ∈ R2 | |x| < 1} be the open unit disc. Use Jordan curve theorem to prove: If f : D → R2 is
continuous and injective, then f(D) is the interior (=the bounded component) of the Jordan curve f(S1).
[Hint: f(D) is a retract of R2.]

(3) Assume Jordan-Brouwer theorem holds. State a higher dimensional analogue of (2) and prove it.

13.7 Application to the Square Peg Problem
Exercise 13.7. Let J ⊂ R2 be a Jordan curve that is symmetric about the origin (i.e. P ∈ J if and only if
−P ∈ J). Moreover, assume the origin O lies in the bounded connected component of R2 \ J . Prove: J has an
inscribed square, i.e. there exists four points on J that are vertices of a square. [Hint: rotate the curve C by
π/2 and try to find an intersection point.]
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13.8 Applications to Graph Theory
Exercise 13.8. We say a graph G = (V,E) is a planar graph, if it can be embedded into R2, i.e. can be drawn
in R2 so that no edge cross.

(1) Prove: The graph K5 (=the graph with vertices V = {ai | 1 ⩽ i ⩽ 5} and edges {aiaj | 1 ⩽ i < j ⩽ 5}) is
not a planar graph.

(2) We say a space X ⊂ R2 is a θ-space if X is the union of three arcs A, B, C, so that they intersect and only
intersect each other at their end points (so that the space looks like the letter “θ”). Prove: If X ⊂ R2 is
a θ-space with arcs A, B, C, then R2 \X has three connected components, whose boundaries are A ∪B,
B ∪ C and C ∪A respectively.

(3) Prove: The graphK3,3 (=the graph with vertices V = {a1, a2, a3, b1, b2, b3} and edges {aibj | 1 ⩽ i, j ⩽ 3})
is not a planar graph.
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Surfaces, Knots, and Triangulations

14.1 Maps on Intervals
Exercise 14.1.

(1) Prove Lemma 4.3.5, Lemma 4.3.6 and Lemma 4.3.7.

(2) Construct two coordinate charts on the “line with two doubled point” (see Exercise 8.7) that violates
Lemma 4.3.4.

14.2 Classification of 1-manifold with Boundary
Exercise 14.2.

(1) Write down an analogue of Proposition 4.3.8 (and of Lemma 4.3.4 if you want) that can help you to prove
the classification theorem of 1-manifold with boundary. [You don’t need to prove your proposition.]

(2) Prove Theorem 4.3.3 (Classification of 1-manifold with boundary) using the proposition you wrote above.

14.3 Knot Groups
Exercise 14.3.

(1) For any knot K, show that the abelianization of the knot group π1(R3 \K) is Z.

(2) Write down the knot groups of the knot 41 and 71 (See Figure 4.1).

(3) Show that the unknot, the knot 31 and the knot 41 are pairwise non-equivalent knots.

14.4 Knot in R4?
Exercise 14.4. Let K be a polygonal knot in R4, that is, the image of an embedding of S1 into R4 that consists
of finitely many line segements.

(1) Prove: There exists a direction v ∈ S3 in R4 such that for any x, y ∈ K, x− y is not parallel to v.

(2) Use the projection prv : R4 → v⊥ to construct an ambient isotopy in R4 that converts the knot K to a
polygonal knot in v⊥ ' R3.

(3) Prove: Any knot in R4 is a trivial knot.

14.5 Cut the Möbius Band
Exercise 14.5. Prove your conclusion via polygonal presentation. (You may use scissors to find out the
answers.)

(1) Cut the Möbius band along the center circle, what do you get?
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(2) Cut the Möbius band along a circle that is close to the boundary circle, what do you get?

(3) What if you cut the Möbius band along both circles mentioned above? Does the order of cutting matter?

(4) What if you cut the Möbius band along k circles that are parallel to the center circle?

14.6 Cut and Paste Polygons
Exercise 14.6. Prove the following identities by doing “cutting and pasting” on the polygons. [Hint: The first
cutting is given. The first pasting is to eliminating a. You will need a second cutting and pasting.]

c

a

d

b−1c

b

d

a

' # #

b

a

d−1

c−1
b−1

a−1

d

c

' #

14.7 Triangulated Surface
Exercise 14.7. Let S be a compact surface which is connected and without boundary.

(1) Prove: If a finite simplicial complex K is a triangulation of S, then

(a) Any 1-simplex in K is the intersection of exactly two 2-simplexes in K.
[What if three triangles meeting at one edge? Use a theorem that we learned in this chapter.]

(b) For any 0-simplex v (i.e. vertex) in K, we can arrange the 2-simplexes containing v “cyclicly” as σ1,
σ2, . . ., σk, σ1, so that σi ∩ σi+1 is a 1-simplex (where we denote σk+1 = σ1).
[What if these 2-simplexes can be arranged into more than two such “cycles”?]

(2) Conversely, suppose K is a simplicial complex consisting of finitely many 2-simplexes and their faces, so
that the conditions (a) and (b) are satisfied. Show that |K| is a surface.
[You need to show that any point has an Euclidean neighborhood.]

14.8 Polygon Presentation is a Surface
Exercise 14.8.

(1) Complete the proof of Theorem 4.4.11 (the existence of polygonal presentation).

(2) Prove: Any polygon presentation is a surface.
[Again you need to show that any point has an Euclidean neighborhood. What if many vertices get glued
into one point?]
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14.9 Symbolic Presentation of Surfaces

Exercise 14.9. Find out the surfaces in our list (i.e. S2, Σk, Σ̃l, S2
m, Σk,m, Σ̃l,m with specified k, l, m) which

are homeomorphic to the ones given below:
(1) 〈a, b, c, d | acadbcb−1d〉.

(2) 〈a, b, c, d, e | abcb−1adede−1〉.

(3) See picture below.

(4) See picture below.

(c) (d)

14.10 Orientability
Exercise 14.10.
(1) Prove Proposition 4.4.21.

(2) For each orientable compact surface (without boundary) Σk,m, prove: there exists an orientation-reversing
self-homomorphism (that is, a homeomorphism f : Σk,m → Σk,m so that for some oriented triangulation
K of σ, f maps simplexes of K to simplexes of K, such that for each triangle ABC in K, the orientation
on 〈f(A), f(B), f(C)〉 is −[f(A)f(B)f(C)].)
[Hint: Just put the surface at a nice position, and consider the map that maps one coordinate to its
inverse. You need to handle even/odd number of boundary circles separately.]

14.11 Euler Characteristic v.s. Covering
Exercise 14.11. We know that S2 is a double covering of RP2. In section 3.7 we have seen that Σ11 is a 5-fold
covering space of Σ3.
(1) Compare χ(S2) and χ(RP2). Compare χ(Σ11) and χ(Σ3).

(2) In general, suppose S1, S2 are compact connected surfaces without boundary, and p : S1 → S2 is a k-fold
covering. Find the relations between χ(S1) and χ(S2), and prove it.

(3) In general, if Σm is a covering space of Σn, find the relation between m and n.

(4) For each non-orientable connected surface without boundary, i.e. Σ̃l,m, there exists an orientable connected
surface which is a double covering of Σ̃l,m. Which surface is it?

14.12 Triangulation of Surface
Exercise 14.12. Let K be a triangulation of a compact surface S without boundary, and let |V |, |E|, |F | be
the number of vertices, edges and triangles in K. Prove:
(1) 3|F | = 2|E|.

(2) |E| = 3(|V | − χ(S)).

(3) |V | ⩾ 7 +
√
49− 24χ(S)

2
.

[So we have seen the triangulation of T2 and RP2 with least vertices.]
[This is also related to the following question: how many color do you need to color a map on surface S?]
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