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Problem Sheet 1

Various Structures

1.1 Distance and Length

Exercise 1.1.

(1) Let (X,d) be a metric space. For any continuous curve v : [0, 1] — X, we define its length to be

Ly(y) = sup {Z d(y(ti—1),7(t:)) |0 =1to <t; < --- < t, =1 1is a subdivision of [0, 1]}
i=1

which could be +o0c0. Then define a new “induced intrinsic metric” dy on X via
dr(z,y) :=inf{L4(7y) | v is a continuous curve joining x and y}
which, again, could be +o0.

(a) Prove: d(z,y) < ds(z,y), and if dj(x,y) < oo for all z, y, then d; is a metric on X.

(b) A metric space (M,d) with d = d; is called a length space. Endow S! with the metric d inherited
from the Euclidean distance. Is (S',d) a length space?

(2) Let (M, g) be a connected Riemannian manifold, and d the Riemannian distance defined in chapter 3.

(a) Prove: For any smooth curve ~ : [0, 1] — M, one has Length () = La(7), where Length (v) is the
length defined in chapter 3.

(b) Prove: d = dj.

(3) Again let (M, g) be a connected Riemannian manifold. Let C be the set of all piecewise smooth curves
v :10,1] = M, endowed with the uniform convergence topology. Prove: the “length functional”

L:C—R
7 + Length, (v)

is lower semi-continuous, i.e. if y, € C and 7 — < uniformly, then

lim inf Length,(yx) > Length, (7).
k—o00

1.2 Warped Products

Exercise 1.2. Let (M, g), (N, h) be Riemannian manifolds, and ¢ a positive smooth function on M. Define a
warped product metric g x4 h on M x N via

(g ¥y h)((Xp, Yy), (X;In Yq/)) = gp(vaX;/;) + ¢2(P)hq(Y:17 Yq/)'
(1) Prove: g x4 h is a Riemannian metric.
(2) Identify R* x S with R? \ {0} via the polar coordinates, i.e.
RT x S' — R?\ {0},
(r,0) — (rcosf,rsinf).

Prove: The warped product metric on RT x St with (r) = r coincides with the standard Euclidean
metric on R? \ {0}.
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(3) Identify (0,7) x S™~1 with S™ — {N, S} (where N, S are the north/south poles of S™ repectively) via
the map
(0,7) x ™1 - 8™ —{N,S} C R x R™,

(r,z) = (cosr, (sinr)z).

Prove: The warped product metric on (0,7) x S™~1 with ¢(r) = sinr coincides with the standard round
metric on S™ — {N, S}.

1.3 Riemannian Covering

Exercise 1.3. Suppose M, N are connected smooth manifolds, and 7 : M — N is a smooth covering map.

(1) Given any Riemannian metric g on N, we may endow with M the induced metric 7*g (called the covering
metric) and call 7 : (M,7*g) — (N, g) a Riemannian covering map. Prove: The covering metric 7*g is
invariant under Deck transformations. [Recall that a Deck transformation is a diffeomorphism ¢ : M — M
such that mo ¢ = 7.

(2) Let 7 : (M,7*g) — (N, g) be a Riemannian covering map, ¢ : (P,h) = (N, g) is a local isometry, and
@: P — M is alift of ¢. Prove: ¢ is a local isometry.

(3) Conversely, suppose 7 : M — N is a smooth normal covering map (i.e. the group of Deck transformations
acts transitively on each fiber), g is a Riemannian metric that is invariant under all Deck transformations,
then there exists a Riemannian metric 7,.g on N such that 7 : (M, 7*g) — (NN, g) is a Riemannian covering
map.

(4) Let é1, ..., €, be a basis of R™, and

be the lattice generated by these vectors. Starting with the Euclidean metric gg on R™, we may get an
induced metric gr on the torus R™ /T so that 7 : (R™, go) — (R™/T', gr) is a Riemannian covering map.
Prove: Two metrices gr and gr are isometric if and only if there exists an isometry of (R™, gg) that sends
I toI'.

1.4 The Holonomy Group

Exercise 1.4. Let M be a connected smooth manifold with a connection V. Consider the holonomy group
Hol, (T, M) = {Py; | v:[0,1] = M is a piecewise smooth closed curve with v(0) = (1) = p}
which is obviously a subgroup of GL(T,M). Prove:

1) For any p # q, Hol,(T,M) = (P] )~ 'Hol, (T, M)PJ, where 7 is any piecewise smooth curve from p = 7(0
Y p\Lp 0,1 a\tq 0,1
to ¢ =7(1).

If M is simply connected, then Hol,(T,M) is connected.

)
3) If (M, g) is a Riemannian manifold and V metric compatible, then Hol, (T, M) C O(T,M).
) Find the holonomy groups of the standard R™, S™ and H™.

)

Find the relation between the holonomy groups of (M x Ma, g1 X g2) and (M;, g;).

1.5 More Riemannian Metrics

Exercise 1.5. (1) An immersion f : N — R™*! of an m dimensional smooth manifold N into R™*! is called

a hypersurface. Suppose {U,u!,...,u™} is a local chart on U so that the map f can be expressed locally
as
k_ gk, 1 m
¥ = ffu,...,u™), 1<k<m+1,
where (z!,...,2™%!) are the coordinates in R™*1. Prove:
afkofk .
* = - ——du' ® du’ .
1790 U Out Oud

kyi,j
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(2) A surface of revolution S in R? can be formed by rotating a curve

V() = (0,y(), 2(1),  (a<t<Db)

in the yz plane with respect to z-axis, where we assume
y(t) > 0 and (y'(t))* + (2 (1))* # 0
for all t. As a consequence, we can parametrize the surface as
S(t,0) = (y(t) cosb,y(t)sinb, z(t)), (a<t<b, 0<6<2m).

Write down the induced metric of gy in R3 on S.

1.6 Riemannian Geometry of S?, Part I

Exercise 1.6. Consider S? as a submanifold in R3. Using cylindrical coordinates 6 and z we have seen

gs2 = dz®@dz + (1 — 2%)df @ db.

1—22
(1) Caculate the length of a great circle on S2.

(2) For any two points, calculate the distance between them. [Hint: By rotating you can always assume one
point is at the North pole, while the other point has § = 7.

(3) Calculate the volume of K, p = {(z,0) | a < z < b}, where -1 <a<b< 1.
(4) For any smooth vector field X = X%0y + X*0,, write down div(X).
(5) For any smooth function f = f(z,0), write down Vf and Af.

1.7 Different Models of Hyperbolic Spaces

Exercise 1.7.

(1) (Hyperboloid Model) We equip with R™*! the Lorentz inner product
(@,y) == =2’ +aly' + -+ a™y™,

and let H™ = {x € R™*! | (x,2) = —1,29 > 0}. Show that (-,-) induces a Riemannian metric ggm =
t*(-,-) on H™.

(2) (Poincaré Disk Model) Let B™ be the open ball of radius 1 in R™, equipped with a Riemannian metric

_ 4 1 1 m m
gpm = (1_|x|2)2(dx Q@dx + -+ da™ @ dx™).

Define a map
f:H™— B™,
1 1

(.’L‘O,ail,...,.%‘m) — m(.r 7...,$m).

Prove: f is an isometry.

(3) (Poincaré Half-plane Model) Let U™ be the upper half-space in R™ defined by z* > 0, equipped with a
Riemannian metric

1
gum = (xl)Q

(da' @ da' + - + dz™ @ dz™).

Define a map
g:B™—>U™,
(1—(21)2 = — (a™)2,222%,...,22™)
2

(z',.. ., 2™) =

Prove: g is an isometry.
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1.8 The Laplace-Beltrami Operator
Exercise 1.8. Let (M, g) be a Riemannian manifold.
(1) Let f, h be smooth functions on (M, g). Check:
A(fh) = fAh—2g(Vf,Vh) + hAf.

(2) Let g = e%*?g be a Riemannian metric on M that is conformal to g. Prove:
Z.f = 672W[Af - (m - Q)Q(V% vf)L
where A denote the Laplace-Beltrami operator associated to 3.
(3) Find the relation between Agm and Agm-1.

(4) Find the relation between Aprxn and Apy, Ap.

1.9 Basic Spectral Geometry

Exercise 1.9. We say that A is an eigenvalue of A if there exist smooth function ¢ # 0 such that
Ap = Ap.

The function ¢ is called an eigenfunction of A corresponding to A. Now suppose (M, g) is a connected compact
Riemannian manifold. Prove:

(1) All eigenvalues of A are non-negative real numbers.

(2) A =0 is always an eigenvalue, whose eigenfunctions are constants.

(3) If ¢ is an eigenfunction of A > 0, then / wdVol = 0.
M

(4) If v1 and @9 are eigenfunctions of different eigenvalues, then / p1p2dVol = 0.
M

(5) Equip S x S with the standard metric. Find all its eigenvalues and corresponding eigenfunctions.

1.10 Riemannian Manifold with Boundary
Exercise 1.10. In Chapter 4 we briefly discussed Riemannian manifold with boundary.
(1) Prove divergence theorem II.

(2) Prove Green’s formula II.

(3) We call A € R a Dirichlet eigenvalue of A if there exist smooth function ¢ # 0 such that
Ap=Xdpin M and ¢ =0ondM.
(a) Prove: All Dirichlet eigenvalues of A are positive real numbers.

(b) Prove: If 1 and @9 are eigenfunctions of different eigenvalues, then / p1p2dVol = 0.
M

1.11 Killing Vector Fields

Exercise 1.11. Any vector field X defines a local family of diffeomorphisms
¢ U CM— ¢p(U)C M,
p—= ¢tX (p) = Vp,Xp (t)

for —e < t < e, which satisfies ¢;* 0 ¢ = ¢;%,, for t, s, t + s € (—¢,£). Now suppose (M, g) is a Riemannian
manifold. We say X is a Killing vector field if these ¢;%’s are isometries.
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(1)

Let X, Y, Z € '™°(T'M). Prove: The following statements are equivalent:

(a) X is a Killing vector field.

(b) Lxg=0.

(©) X(Y,2) = (X, Y], 2) + (¥, [X, Z]).

(d) (VyX,Z) + (VzX,Y) = 0.

(e) The (1,1)-tensor field VX defined by VX : Y — Vy X is skew-symmetric.

Let X be a Killing vector field, and p € M is a given point. Prove: X is uniquely determined by X (p)
and VX(p).

Prove: The set of Killing vector fields, denoted by iso(M, g), is a Lie subalgebra of (I'™°(M), [, ]).

(m+1)m

Prove: dimiso(M, g) < 5

, where m = dim M.

Now suppose M is compact, in which case the isometry group Iso(M,g) is known to be a Lie group.
Assume this. Prove: iso(M, g) is the Lie algebra of Iso(M, g).

1.12 Bi-invariant Metric on Lie Groups

Exercise 1.12. A Riemannian metric on a Lie group G is left-invariant if

<X97Yg>g = <(dLh)nga (dLh)ng>hg

holds for all g,h € G and all X, Y, € T,G.

(1)

Take an arbitrary inner product (-,-). on T.G. Check:
(Xg,Yg) = ((dLy-1)g Xy, (dLy1)gYy)e
defines a left-invariant Riemannian metric on G.

Write down the definition for a Riemannian metric to be right-invariant, and construct a right-invariant
Riemannian metric on G.

A Riemannian metric on a Lie group G is bi-invariant if it is both left-invariant and right-invariant. Prove:
If (-,-) is a bi-invariant Riemannian metric on G, then (-,-). is a conjugation-invariant inner product on

T.G.

Conversely, show that if (-, ). is a conjugation-invariant inner product on T.G, then the left-invariant
Riemannian metric defined in (1) is bi-invariant.

Now suppose G is compact, so that there exists a Haar measure on G, which can be think of as a volume
form w that is both left-invariant and right-invariant:

Liw=w=Rw, Vg € G.
Prove: For any left-invariant metric on GG, the new inner product

(Xg,Yy)how = / ((dRp)gXg, (dRR)gYg)onw, Vg€ G,and X,,Y, € T,G
G

defines a bi-invariant Riemannian metric on G.
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Curvatures

2.1 Isometry Preserves Geometry

Exercise 2.1. Let ¢ : (M,g) — (]T/.f, g) be a local isometry. Prove:

(1)

(2)

Given a coordinate system (z1,...,2™) near a point p of M, one defines a coordinate system (z!,..., ™)
near o(p) by letting & = a2 o o~ 1. Prove: »*gi; = gij-

Prove: For vector fields X,Y € I'*°(TM), by restricting to neighborhoods of p and ¢(p), one has
ng(VXY) = vd@(x)dg@(Y)

State and prove the fact “curvature tensor is invariant under local isometry”.
State and prove the fact “sectional curvature is invariant under local isometry”.

Prove that the natural action of the isometry group Iso(S™, gyound) on the Grassmannian bundle G2 (T'S™)
is transitive, and thus (S™, ground) has constant sectional curvature.

2.2 Riemannian Geometry of the Hyperbolic Space: Part II

Exercise 2.2. Let H™ be the upper half-space in the R™, i.e.

H™ = {(z*,...,2™) e R™ | 2™ > 0},

equipped with the hyperbolic metric

(1)
(2)
3)

(de' @ da' + - - 4 dz™ @ dz™).

SRCDE
Calculate the Christoffel’s symbols.
Calculate the Riemannian curvature tensor, and show that H™ has constant sectional curvature —1.
For m = 2 and ¢ > 0, find the volume of the vertical stripe

Se={(w,y) | |z] < 1,e <y < oo}

2.3 Riemannian Geometry of Product Manifolds

Exercise 2.3.

Let (My,g1) and (Ma, g2) be Riemannian manifolds. Consider the product Riemannian manifold (M; x
Ma, wigy + w392), where
7« My x My — M;

be the canonical projections. For any (p,q) € M1 x M, we let
L33M1—>M1 ><]\427
pr (p.q)

be the embedding of My into My x My as My x {q}. Similarly one define Lg : My — My x Ms. Denote by
V* and Rm' the Levi-Civita connection and Riemann curvature tensor on M;.

6
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(1) Prove: The Levi-Civita connection V on M; x My satisfies
Vxi+x: (Y1 +Y2)(p,q) = duf (Vi Y1), + dif(V, Ya),
for any X1,Y; € T°(TMy), X2,Ys € I'°(TMy).
(2) Prove: The Riemann curvature tensor of My x My is
Rm(X1 + X2, Y1 4 Y2, Z1 + Zo, Wi + W3) = Rm' (X1, Y1, Z1, W1) + Rm* (X2, Yz, Za, Wa)
for any X1,Y1, 21, Wy € (T M), Xo,Ys, Zy, Wy € I'°(T'My).

(3) Write down similar formula for the Ricci tensor, the Weyl tensor and the scalar curvature of M; x My
in terms of those of M; and M.

e Now consider S™ x S™ endowed with the canonical metric.

(4) Prove: All sectional curvatures of S™ x S™ lie in [0, 1].

(5) Find the Ricci and Weyl tensor of S™ x S™.

(6) When will it be Einstein? When will it be locally conformally flat?
(7)

7) Find the scalar curvature of S™ x S™.

2.4 Polarization Formula for Riemann Curvature Tensor

Exercise 2.4. Denote I?(X,Y) = Rm(z,Y, X,)Y).
(1) Find a formula for Rm(X,Y, X, W) in terms of K.
(2) Prove:

6RM(X,Y, Z,W)=K(X+Z,Y+W)-KY +Z,X +W) - K(X,Y + W) — K(Z,Y + W)
~K(X+ZY)-K(X+ZW)+K(Y,X+W)+K(Z,X+W)
+KY+Z,X)+K(Y +2ZW)+ KX,W)+K(ZY) - K(Y,W)-K(Z,X).

2.5 Curvature-like Tensors as Curvature Tensors

Exercise 2.5.
(1) Fix r. For 1 <i < j < m, choose vectors h;; € R", and let hj; = h;;. Define
Rijii = (hik, hji) — (has hiji) s

where (-, ) is the standard inner product on R". Prove: Rijklei ®el ®eF @ el is a curvature-like tensor,
where e!, ..., e™ is a basis of (R™)*.

(2) Prove: Fix m, for r large enough, any curvature-like tensor on R™ arises in this way.

2.6 Riemannian Geometry under Conformal Change

Exercise 2.6. Let (M, g) be a Riemannian manifold of dimension m. Let § = e2?g be a Riemannian metric
that is conformal to g. In what follows, everything without a “bar” (e.g. V, Rm, S, etc) is for (M, g), and
everything with a “bar” (e.g. V, Rm, S, etc) is for (M, ).

(1) Prove: VxY =VxY + (Xp)Y + (Yp)X — g(X,Y)Ve.
(2) Prove: Rm = ¢*¢[Rm — g®(Vdyp — dp @ dp + 3|dp|*g)].
(3) Prove: S =e 2¢[S +2(m —1)Ap — (m —2)(m — 1)|Ve|?].
(4)

4) The conformal Laplacian is defined to be the operator
(m—2)S
Lf=A -—f.
f=AT+
Check: For any f € C*(M),
Lf= e_"n;%’L(e%“"f).
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(5) Deduce the Yamabe equation: If m > 2, and g = uﬁ% then

+2

-1 — 0m
4LAu+S-u=S-um—2
m—2

2.7 Riemannian Geometry of Surfaces

Exercise 2.7. Let M be a two dimensional manifold, i.e. a surface, with Riemannian metric g.
(1) Prove: Near each point p, there is a coordinate system so that g is of the form
g = E(z',2*)d2' @ do' + G(2!, 2?)da! @ da?.

(2) Express the sectional curvature of M at each point using the functions E, G above. [You can use either
direct computation or the moving frame.]

2.8 Weyl Tensors

Exercise 2.8.

(1) Let (M, g) be of constant sectional curvature. Prove: R x M is locally conformally flat.

(2) Again suppose (M, g) has constant sectional curvature. Suppose ¥ is a positive smooth function on R.
Prove: The warped product R x M is locally conformally flat.

(3) Find the Weyl tensor of §% x S§% and R? x S2.

2.9 Riemannian Geometry of Submanifolds: Part I

Exercise 2.9. Let (M, g37) be a Riemannian manifold, and ¢ : M — M be an embedded submanifold, with
induced Riemannian structure gas = ¢*gg7. Using the Riemannian structure of M, for each point p € M C M,
any X, € T, M can be written uniquely as

X, =X, +X,,
where Y; € T,M and Y;f € (T,M)*. In what follows we assume X,Y,Z, W € I'(T'M) are smooth tangent

vector fields on M, and &,¢ € I'(TM*1) are smooth normal vector fields on M, i.e. &,,(, € (T,M)* for all
p € M and are smooth.

(1) Let V be the Levi-Civita connection of (M, g57). Explain: VxY is well-defined.
(2) Let VxY = (VxY)T. Check: V is the Levi-Civita connection on M.

(3) Set S(X,Y) = (VxY)T. Check: S is C*°(M)-linear and symmetric. (S is called the second fundamental
form of M.)

(4) Define the shape operator Sg : T,M — T, M by
(Se(X),Y) = (S(X,Y),€), VY €>™°(TM).
Prove: S¢ is symmetric.
(5) Prove: S¢(X) = —(Vx&)T.
(6) Let Rm, Rm be the Riemannian curvature tensor on M, M. Prove: (Gauss equation)
Rm(X,Y,Z,W)=Rm(X,Y,Z,W) - (S(X,2),S(Y,W)) + (S(X,W),S(Y, Z)).

(7) Use the Gauss equation to prove: (S™, ggm) has constant curvature 1.
(8) Verity the Codazzi equation
Rin(X,Y, 2,€) = ~(Tx8)(Y, 2),6) + (TyS)(X, 2),€),
where (Vx9)(Y, 2) := (WX(S(Y Z)Nt - S(VxY,Z) - S(Y,VxZ).

(

We will denote V& = (Vx&)t and RY(X,Y)E = —Vx V€ + VEV%E + V &. Verify the Ricci
X [X,Y]
equation -
Rm(X,Y,€,¢) = (R (X,Y)E, ) + (SeSc X — ScSeX,Y).

[These three equations are the fundamental equations in submanifold geometry.]
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2.10 Riemannian Geometry of Lie Groups: Part 11

Exercise 2.10. Let G be a Lie group endowed with a bi-invariant Riemannian metric g. Suppose X,Y,Z € g
are left-invariant vector fields on G.

(1) Prove: ([X,Y],Z) = (Y, Z],X).
(2) Prove: VxX =0.

1
(3) Prove: VxY = E[X’ Y].

(4) Prove: R(X,Y)Z = —i[[x, Y1, Z).

(5) %et X, Y be orthonormal, and II, € T,M be the 2-dim plane spanned by X,, Y,. Prove: K(II,) =
X, Y72
Iy

(6) Prove: G has positive Ricci curvature if the center of G is discrete.

2.11 Riemannian Submersions

Exercise 2.11. Let (M, gy;) and (M, gy) be Riemannian manifolds, and f : M — M a submersion. For
any p € M, we will call V}, = ker(df,) C T,M the vertical space at p, and H, = V;‘ C T,M the horizontal

space at p. For any vector Yp € T,M, we will denote X" the vertical component of X. Note that dfy, when
restricted to Hp, is a linear isomorphism. For any X € I'*°(T'M), its horizontal lift is the horizontal vector field
X defined by df,(X,) = X f(p)- The submersion f is said to be a Riemannian submersion if for any p € M,
dfy : Hy — Ty, M is a linear isometry.

(1) Prove: For any X,Y € I'(TM),

([Zz,W]", [X.Y]").

DO =

<[ ,Zﬂv,[ 7ivr)4

(3) Let II be a plane spanned by orthogonal unit vectors X,,, Y, € T, M and II the plane spanned by X, Y.

Prove: K(ITI) = K(II) + %[va?p]vﬁ

2.12 Gauss-Bonnet-Chern in Dimension 4

Exercise 2.12. The famous Gauss-Bonnet-Chern formula says that if (M, g) is an orientable closed Riemannian
manifold of dimension m = 2k, then

1
22 (1 2)! /M = x(M),

where x(M) is the Euler characteristic of M, and Q is the following m-form

Q=3 (-7 AQIE A A QY

gESm

where S, is the permutation group of (1,...,m), and Q; is the curvature two form associated to any orthonormal
basis.

1
(1) For m = 2, deduce —/ Kdx = x(M).
2 M

(2) For m =4, deduce

1
o [ (1Rl = A[Re? + 8%)da = x(01),
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(3) Prove: If (M,g) is an Einstein manifold of dimension 4, then x(M) > 0, and the equality holds if and
only if (M, g) is flat.

(4) Prove: If (M, g) is a locally conformally flat manifold of dimensiona 4, then

1 1
__ 2, a2 '
x(M) 6.2 /M < |E|” + 125 ) dx

(5) Prove: One can find an orthonormal frame so that Ri213 = Ri214 = Ri203 = Ri204 = Ri323 = R1314 = 0.

(6) Prove: If M is a compact orientable Riemannian manifold of dimension 4 which admits a metric of positive
sectional curvature, then x(M) > 0.



Problem Sheet 3

Geodesics

3.1 Examples of Geodesics

Exercise 3.1.
(1) Consider (52, ground)-
(a) Show that the “equator” v(#) = (cos#,siné,0) is a geodesic.

(b) Show that the “meridian” v(z) = (V1 — 22,0, z) is not a geodesic, then find a correct parametrization
so that it becomes a geodesic.

(2) Describe the relations between the geodesics on the product Riemannian manifold (M X - x My, g1 X
-+ X gx) with the geodesics on (M;, g;)’s.
1

(3) Consider the hyperbolic space H? = {(z,y) | y > 0} endowed with the hyperbolic metric g = —
Y

dz + dy ® dy).

(dx®

z Y

———, ——— | are isometries.
)
xr2 y2 xr2 y2 )

(a) Prove: The maps ¢(z,y) = (—z,y) and ¢(x,y) = (
(b
(

)

) Deduce that the upper unit semicircle and the positive y-axis are geodesics.

(c) Prove: The maps (x,y) — (z + a,y) and (z,y) — (bzx,by) are isometries for any a and any b > 0.
)

d) Figure out all geodesics on H2. [Write down the correct parametrization.]
(e) Is (H2,g) complete?

(4) Describe geodesics on Lie groups (endowed with a bi-invariant metric).

3.2 Torsion Free Connection v.s. Geodesics

Exercise 3.2. Let M be a smooth manifold and let V, V' be two linear connections on M. For any vector
fields X,Y € I'(T'M), define
AX,)Y)=VxY - V4Y.

(1) Prove: Ais a (0,2)-tensor.
(2) Prove:

(a) V and V' have the same torsion if and only if

AX,Y)=A(Y,X), VXY € I™(TM).
(b) V and V' have the same geodesics if and only if
AX,Y)=-A(Y,X), VXY € I™(T,M).

(¢) For any linear connection V, there is a unique torsion free connection V' with the same geodesics.
(3) Suppose ¢ is a Riemannian metric on M, and suppose V is a g-compatible linear connection.

(a) Prove: V' is g-compatible if and only if

g(A(X,Y), Z) = —g(Y,A(X, Z)), VXY, Z e T°°(TM).

(b) Give another proof of the uniqueness part of the fundamental theorem in Riemannian geometry.

11
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3.3 Examples of the Exponential Maps

Exercise 3.3. For each of the following, write down the exponential map exp,;:

M = R"™ with standard gy, and p = 0 the origin.

3.4 Riemannian Geometry of Surfaces of Revolution

Exercise 3.4. Consider the surface of revolution

S(x,0) = (y(z) cos b, y(x)sinb, z(z)), a<x<b,0<8<2m,
endowed with the canonical metric

g = ((x)? + 2(z)?)dr @ dx + y(x)*do @ db.

For simplicity, in what follows we will assume 3(x)? + #(z)? = 1.
1) What is the geometric meaning of y(x)? + (z)? = 17
2) What is the Gaussian curvature at each point?
4) Check that the meridians « : 2(t) = t, 6(t) = ¢ are geodesics.

(
(
(
(
(5) Find the condition for a parallel v : 2(t) = ¢, (t) =t to be a geodesic.
(

)
)
3) Write down the equations for a curve v : z = x(t), 8 = 0(t) to be a geodesic.
)
)
)

6) Now suppose 7 : @ = z(t), & = 6(t) be a normal geodesic that is neither a meridian nor a parallel. At any
point y(t), let 3(t) be the angle between v and the parallel that passes v(t). Prove: cos 8(t) = y(x(¢))0(t).

(7) Prove the Clairaut relation: y(t) cos 5(t) =constant along -y

3.5 Riemannian Submersion: Part II

Exercise 3.5. Let f: (M, g57) = (M, gn) be a Riemannian submersion.
(1) Let 5 be any curve in M, and v = f o5. Prove: Length(¥) > Length(vy).
(2) Let v be a geodesic of M emanating from p which is a horizontal lift of ~.

(3) Conversely, show that if 7 is a geodesic in M such that 7(0) is horizontal, then ¥(t) is horizontal for all ¢,
and v = f o7 is a geodesic in M.

3.6 Completeness of Riemannian Metric: Examples

Exercise 3.6.

(1) Suppose (M, g) satisfies “there exists 9 > 0 so that for any p € M and X, € T,M, there is a normal
geodesic v : [0,e0] = M with v(0) = p, ¥(0) = X,,”. Prove: (M, g) is complete.

(2) Suppose (M, g) is complete and ¢ is another Riemannian metric on M with g > g. Prove: (M,g) is
complete.

(3) Let (M, g) be a Riemannian manifold and there exists a proper [i.e. the pre-images of compact sets are
compact] Lipschitz function f : M — R. Prove: (M, g) is complete.
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(4) Prove: (M, g) is complete if and only if for some fixed r, the closed geodesic ball B,.(p) is compact for any
pe M.

(5) A Riemannian homogeneous space is a Riemannian manifold such that its isometry group acts transitively
on it, i.e. for any p, ¢ € M there exists an isometry ¢ of (M, g) so that ¢(p) = ¢q. Prove: Any Riemannian
homogeneous space is complete.

3.7 Completeness of Riemannian Metrics II: Existence

Exercise 3.7.

(1) Let’s prove the existence of a complete Riemannian metric on any smooth manifold M. In fact, we shall
prove that given any Riemannian metric g, there exists a complete Riemannian metric ¢’ that is conformal
to g. Without loss of generality, suppose M is non-compact and g is incomplete.

a) Let r(p) = sup{r | B.(p) is compact}. Prove: 0 < r(p) < oo for all p € M.

(
(b) Check: |r(p) —r(g)| < dist(p, ¢), and conclude that r is continuous.
1
¢) Prove: There exists a smooth function w on M so that w(p) > )
r\p
(d) Define a new metric ¢’ on M by ¢’ = w?g. Denote by B.(p) the closed geodesic ball of radius r

1
around p with respect to the new metric g’. Prove: Bl’j <3> C B, (74(2p)> for all p.

(e) Conclude that (M, ¢’) is complete.

(2) Next let’s prove that if every Riemannian metric on M is complete, then M is compact. Equivalently, we
want to construct a incomplete Riemannian metric on any non-compact smooth manifold. Again we shall
prove a stronger result: for any (M, g) with M non-compact, there is a Riemannian metric g’ conformal
to g which is incomplete. Without loss of generality, assume g is complete.

(a) Fix p € M and let w be a smooth function on M so that w(g) > dist(p, ¢). [The existence is the same
as (1)(c) above.] Let ¢’ = e2¥g. Prove: Under ¢’ the new distance dist’(p, ¢) < 1 for all q.

(b) Conclude that (M, ¢’) is incomplete.

3.8 Rays in Complete Noncompact Riemannian Manifolds

Exercise 3.8. Let (M, g) be a complete noncompact Riemannian manifold.
o A normal geodesic v : [0, +00) — M is called a ray if dist(vy(a),v(b)) = |a — b| for any a,b > 0.
o A normal geodesic 7 : (—o0,00) — M is called a geodesic line if dist(y(a), (b)) = |a — b| for any a,b € R.
(1) Prove: From any point p € M there exists a ray so that y(0) = p.

(2) We say M is discontinuous at infinity if there exists a compact subset K in M so that M \ K contains
at least two non-compact connected components. Prove: If (M, g) is complete and M is discontinuous at
infinity, then M contains a geodesic line.

(3) Construct a complete noncompact Riemannian manifold on which there is no geodesic line.

(4) Now let 71, 72 be two geodesic rays on M. We say 71, 72 are asympototic if there exists C' € R so that
dist(y1(t),v2(t)) < C for all ¢ > 0. This defines an equivalent relation on the set of geodesic rays. We will
denote the set of equivalent classes by M (c0), and call it the sphere at infinity of M. Figure out M (c0)
for M = R", S' x R! and H?, each equipped with the standard Riemannian metric.

3.9 Existence of Variation

Exercise 3.9. Let V(t) a piecewise smooth vector field along a smooth curve v : [a,b] — M.
(1) Generalize the concept of variation to allow piecewise variation field.
(2) Prove: There exists a variation of v whose variation field is V.

(3) Prove: If V(a) =0, V(b) = 0, then the variation could be chosen to be proper.
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3.10 Second Variation of Length

Exercise 3.10. Let v : [a,b]; = M be a smooth curve
fila,b] x (—g,8)y X (=6,0)w = M

be a smooth variation of v with two parameters v, w. Denote 7, .,(t) = f(t,v,w) and

ft(t,U,UI) = df(t,v,w) (;) ) fv(tvvvw) = df(t,v,'w) (;}) ) fw(t,v,w) = df(t,v,w) <£U>

as usual and let ) ,
V(t) = df1,0,0) <6v) ;o W(t) = dft,0,0) (&u)

be the corresponding variation fields of the two parameter directions.

(1) Prove:
2 b - ~ ~
mL(%,w) :/a {<v8/8tfv>v8/6tfw> + (R(ft, fw) ft, fo) + (Vo0:Vasowfos ft)
1

AP

(2) Let v be a normal geodesic, prove

<€8/8tfm ft><€6/6tfw, ft>} dt

82
Owdv

b ~
L) = / (V5 V. T3 W) + (REWIA V) — 365 VIZE W)t + (Vo fu 5D

(0,0)

(3) Let V4, W+ be the orthogonal component of V, W with respect to ¥, i.e.
VE=V—(V.A)y,  WE=W— (W45
Show that

82

b ~
5ege|  Llww) = / (V4VE VW) 4 (R, W3, VE)dt + (Vw fu, )l

(0,0

14



Problem Sheet 4

Jacobi Field

4.1 Jacobi Fields for Manifolds with Constant Sectional Curvature
Along ~

Exercise 4.1. Let (M, g) be a Riemannian manifold, and v : [0,]] = M a normal geodesic, where we assume
I # kr/y/k if K > 0. Suppose M has constant ssectional curvature s along v, i.e. K(IL,) = « for any
2-dimensional plane IL, ) > ().

(1) Prove: The Jacobi field V along v with V(0) = 0 and V(1) = X; € (¥(1))* is

sn (1)
sn (1)

V(t) = X(#),

where X is the parallel vector field along v with X (1) = X.
(2) Given any Xo € T )M and X; € T,,;yM, find the Jacobi field with V' (0) = Xo, V(I) = Xj.

4.2 Characterizing Constant Curvature via Jacobi Field

Exercise 4.2. We say a vector field Y along  is almost parallel if there is a smooth function f so that
Y (t) = f(t)X (t), where X is parallel along . As we have seen, any normal Jacobi field along a geodesic on a
constant curvature space is almost parallel.

(1) Suppose v : [0,]] = M is a geodesic in (M, g) with v(0) = p, so that any normal Jacobi field along ~ is
almost parallel. Let V' C T}, M, and Vj a small neighborhood of 0 in V' such that exp, : Vo = N = expp(Vo)
is a diffeomorphism. Suppose v([0,1]) C N. Prove: P ,(V) = T,;)N.

(2) Suppose for any geodesic v with v(0) = p, any normal Jacobi field along ~y is almost parallel. Prove: for
any pair wise orthogonal vectors u, v, w € T,M, (R(u,v)u,w) = 0.

(3) Suppose m > 3. Prove: If any normal Jacobi field along any geodesic in M is almost parallel, then M has
constant sectional curvature.

4.3 Square of Distance in Normal Coordinates

Exercise 4.3. Consider two geodesics 71(t) = exp,(tv) and 72(t) = exp,(tw) emanating from p. Let g(s) =
d?(v1(s),72(s)). To estimate L(s) for s small, consider the varation

F(t,5) = 04(t) i= exp, o (texp= ! (2(5).
Let fi(t,s) = dfi s(0/0t) and fs(t,s) = df;,s(0/0s) as usual. Note that for s small, o, is the minimizing geodesic

from 71 (s) to v2(s), and g(s) = ||6s5(t)||?> = || f:(¢,s)||>. [In what follows, although we use usual notation for the
connection, they should be understood as the induced connection.]

(1) Show that f:(¢,0) =0, f5(0,s) =41(s), fs(1,8) = Aa(s).
(2) Show that (Vo a¢ft)t,s) = 0, (Vayasfs)0,s) =0, (Vajasfs),s) = 0.

15
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(3) Show that for each fixed s, fs(t,s) is a Jacobi field along 7, and (Vg 9:Vaafs)t,0 = 0. Conclude that
fs(t,0) is linear and thus f,(t,0) = v + t(w — v).
(4) Show that ¢'(0) = 0, ¢”(0) = 2|v — w|*.

(5) Show that (Va/a:VasatVasasfs)wo) = 0, which implies (Vy,asfs)(,0) is linear in ¢. Conclude that
(Vajasfs)t0) =0, (VasatVayasfs) o =0, (VajasVajasfi) o) =0, and g”’(0) = 0.

(6) Show that ¢"””(0) = 8Rm(v, w,v,w).
1
(7) Conclude that g(s) = [v — w|?s? + ng(’U, w, v, w)s* + O(s%) and thus

1 Rm(v,w,v,w
d(71(5),7(5)) = o — wls + GWSS L0,

4.4 Expansion of Metric in Normal Coordinates

Exercise 4.4.

(1) Prove: In a Riemannian normal coordinates, near p we have
9ij = 0ij — %Rikjlxkxl - %Rikﬂ;rﬁ?kxll‘r +O0(|z).
What can you say about the coefficients of higher order terms?
(2) Expand det(g;;) up to order 3 near p.

(3) Prove Bianchi Identity II using normal coordinates.

4) Prove: A chart is a Riemannian normal coordinate system if and only if for any i, g;;27 = .
Y y Y 1, Gij

4.5 Locally Symmetric Space

Exercise 4.5. Let (M, g) be a locally symmetric space, i.e. if VxR =0forall X € T°(TM). Let v : [0,a] > M
be a geodesic in M with p = ~(0), X, = 4(0).

(1) Let X, Y, Z be vector fields that are parallel along . Prove: R(X,Y)Z is also parallel along ~.

(2) Define a linear transformation Kx, : T, M — T,M by

Kx, (Yp) = R(Xp,Yp) X

Prove: Kx, is self-adjoint.

(3) Let A1,...,Ap be eigenvalues of Kx,, with corresponding eigenvectors ey, ... e, € T,M. Let e;(t) be
the parallel transport of e; along . Prove: For all ¢ € [0, 00), we have

Ky (€i(t)) = Niei(t), i=1,...,m.

(4) Let X(t) = X*(t)e;(t) be a Jacobi field along . Show that the Jacobi equation becomes

Xit)+ M X =0, i=1,...,m.

(5) Conclude that the conjugate points of p along v are given by

7k
Y k=1,2,...,
7(\//\1‘)

where \;’s are positive eigenvalues of Ky, .
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4.6 More on Cut Locus

Exercise 4.6. Let (M, g) be complete.
(1) Prove: The function f: SM — RU {co} defined by

to, if vp,x,(to) is the cut point of p along v,

f(Xp) = {

+ o0, if p has no cut point along v, x,,

is continuous.
2) For any p € M, Cut(p) is closed.
3) M is compact if and only if Cut(p) is nonempty and compact for any p € M.

(2)
(3)
(4) Let S(p) = {tX, | X, € S,M,0 <t < f(X,)}. Prove: exp, : £(p) — exp,, (X(p)) is a diffcomorphism
(5) Prove: M = exp,(3(p)) U Cut(p) and exp,(S(p)) N Cut(p) = @.

(6)

6) We call a point ¢ € M a regular cut point if there exists at least two minimal geodesic from p to q. Prove:

The set of regular cut points is a dense subset of Cut(p).

4.7 Smoothness of Distance Function

Exercise 4.7. For any p € M, consider the distance square function

fla) = %dist(n q)*.
(1) For (M,g) = (S™, gsm) the standard sphere, is f a smooth function?
(2) Argue that f is smooth on M \ Cut(p).
(3) For any g € M \ Cut(p), find (Vf)(q).
(4)

4) For any ¢ € M \ Cut(p) and Y, € T,M, let X be a Jacobi field along 7, the minimal geodesic from p to
g, so that X (0) =0, X (dist(p,q)) = Y;. Prove: V2[f(Y,,Y,) = dist(Vaa(aist(p.q) X, X (dist(p, ¢)))-

(5) Prove: f is not C! function at regular cut points.

(6) Can f be everywhere smooth on M if M is compact?

4.8 Convex Functions on Riemannian Manifolds

Exercise 4.8. o Let (M,g) be a Riemannian manifold. A function f : M — R is said to be a convex
function if for any geodesic v : [a,b] — M, the function f o+ : [a,b] — R is convex.

(1) Prove: If f is a convex function on M, then for any ¢ € R, the sublevel set M, = {p € M | f(p) < ¢}
is a totally convex subset of M.

(2) Prove: If f is smooth, then f is convex if and only if its Hessian V2 f is positive semidefinite.

(3) Let p € M be an arbitrary point, and d,(¢) = dist(p, ¢) is the distance function from p. Prove: There
exists an neighborhood U of p so that the distance square function d? is convex on (U, g).

o Now suppose (M, g) is a complete simply-connected Riemannian manifold with non-positive sectional
curvature.

(4) Prove: the distance square function
d?> . M x M — R,
d*(p. q) = [dist(p, )]

is convex on M x M.

(5) Conclude that for any p € M, the function d2 is a convex function on M.



Topics of Final Projects

10.

11.
12.
13.
14.
15.

. Myers-Steenrod theorem: The isometry group of any Riemannian manifold is a Lie group.

Cartan-Janet local isometry theorem: Any analytic m-dimensional Riemannian manifold admits an ana-
Iytic local isometric embedding into R”(m+1)/2,

Gromov compactness theorem: Let (M;,g;) be a sequence of closed Riemannian manifolds with Ric >
(m — 1)c and diam(M, g) > §. Then there is a subsequence (My,, gx,) that converges, with respect to the
Gromov-Hausdorff distance, to a compact metric space.

Lusternik-Fet closed geodesic theorem: Any compact Riemannian manifold (M, g) admits a nontrivial
closed geodesic.

Weyl-Schouten theorem: Let (M, g) be a Riemannian manifold. If m > 4, then (M, g) is locally conformally
flat if and only if the Weyl tensor W = 0. If m = 3, then (M, g) is locally conformally flat if and only if
(VxA)(Y,Z) — (VyA)X,Z)=0,VX,Y,Z € I'™°(T M), where A is the Schouten tensor.

Cheeger-Gromoll soul theorem: For any complete noncompact connected Riemannian manifold (M, g) with
non-negative sectional curvature, there exists a totally convex compact submanifold without boundary
(known as the soul) whose normal bundle is diffeomorphic to M.

Cartan-Ambrose-Hicks theorem: Let (M, g) and (M ,§) be complete Riemannian manifolds and suppose

M is simply connected. Suppose L : (T, M, g,) = (I3M, §p) is an linear isometry, and assume that for
any broken geodesic (i.e. a curve that is piecewise minimizing geodesic) -y, we have, as in Cartan’s local
isometry theorem, that L,(R(u,v)w) = ﬁ(Lq(u)7 Lq(v))Lg(w) for any u,v,w € T;M. Then if two broken
geodesics 1, 72 beginning at p in M have the same endpoint, the corresponding broken geodesics in M
also have the same end point. Moreover, the resulting natural map ® : M — M is a locally isometry (and
hence covering map).

The Gauss-Bonnet-Chern theorem: If (M, g) is an orientable closed Riemannian manifold of dimension

1
=2k, then —————— Q= y(M).
1 A, e 2m7rm/2(m/2)!/M X(M)

Korn-Lichtenstein theorem on the existence of isothermal coordinates: On any 2-dimensional Riemannian
manifold (M, g), there exists coordinates x, y and smooth function u = u(z,y) so that g = e**(dz ® dx +
dy ® dy).

Ambrose-Singer holonomy theorem: As Lie subalgebra of the Lie algebra of endomorphisms of 7),M, the
Lie algebra of the holonomy group with base point p is the subalgebra generated by the endomorphisms
of the form (P7)~!o R(P7u, P"v)o P7, where R is the curvature endomorphism, and + is a curve starting
at p.

Curvature of left-invariant metrics on compact Lie group.
Riemannian geometry of CP™.

Riemannian geometry of the Grassmann manifold G(k,n).
Riemannian geometry of TM (with Sasaki metric).

Riemannian geometry of isoparametric hypersurface in space form.
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