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Problem Sheet 1

Various Structures

1.1 Distance and Length
Exercise 1.1.

(1) Let (X, d) be a metric space. For any continuous curve γ : [0, 1] → X, we define its length to be

Ld(γ) = sup

{
n∑
i=1

d(γ(ti−1), γ(ti)) | 0 = t0 < t1 < · · · < tn = 1 is a subdivision of [0, 1]
}

which could be +∞. Then define a new “induced intrinsic metric” dI on X via

dI(x, y) := inf{Ld(γ) | γ is a continuous curve joining x and y}

which, again, could be +∞.

(a) Prove: d(x, y) ⩽ dI(x, y), and if dI(x, y) < +∞ for all x, y, then dI is a metric on X.
(b) A metric space (M,d) with d = dI is called a length space. Endow S1 with the metric d inherited

from the Euclidean distance. Is (S1, d) a length space?

(2) Let (M, g) be a connected Riemannian manifold, and d the Riemannian distance defined in chapter 3.

(a) Prove: For any smooth curve γ : [0, 1] → M , one has Lengthg(γ) = Ld(γ), where Lengthg(γ) is the
length defined in chapter 3.

(b) Prove: d = dI .

(3) Again let (M, g) be a connected Riemannian manifold. Let C be the set of all piecewise smooth curves
γ : [0, 1] →M , endowed with the uniform convergence topology. Prove: the “length functional”

L : C → R
γ 7→ Lengthg(γ)

is lower semi-continuous, i.e. if γk ∈ C and γk → γ uniformly, then

lim
k→∞

inf Lengthg(γk) ⩾ Lengthg(γ).

1.2 Warped Products
Exercise 1.2. Let (M, g), (N,h) be Riemannian manifolds, and ψ a positive smooth function on M . Define a
warped product metric g ×ψ h on M ×N via

(g ×ψ h)((Xp, Yq), (X
′
p, Y

′
q )) = gp(Xp, X

′
p) + ψ2(p)hq(Yq, Y

′
q ).

(1) Prove: g ×ψ h is a Riemannian metric.

(2) Identify R+ × S1 with R2 \ {0} via the polar coordinates, i.e.

R+ × S1 → R2 \ {0},
(r, θ) 7→ (r cos θ, r sin θ).

Prove: The warped product metric on R+ × S1 with ψ(r) = r coincides with the standard Euclidean
metric on R2 \ {0}.

1



CHAPTER 1. VARIOUS STRUCTURES 2

(3) Identify (0, π) × Sm−1 with Sm − {N,S} (where N , S are the north/south poles of Sm repectively) via
the map

(0, π)× Sm−1 → Sm − {N,S} ⊂ R× Rm,
(r, z) 7→ (cos r, (sin r)z).

Prove: The warped product metric on (0, π)× Sm−1 with ψ(r) = sin r coincides with the standard round
metric on Sm − {N,S}.

1.3 Riemannian Covering
Exercise 1.3. Suppose M , N are connected smooth manifolds, and π :M → N is a smooth covering map.

(1) Given any Riemannian metric g on N , we may endow with M the induced metric π∗g (called the covering
metric) and call π : (M,π∗g) → (N, g) a Riemannian covering map. Prove: The covering metric π∗g is
invariant under Deck transformations. [Recall that a Deck transformation is a diffeomorphism ϕ :M →M
such that π ◦ ϕ = π.]

(2) Let π : (M,π∗g) → (N, g) be a Riemannian covering map, ϕ : (P, h) → (N, g) is a local isometry, and
ϕ̃ : P →M is a lift of ϕ. Prove: ϕ̃ is a local isometry.

(3) Conversely, suppose π :M → N is a smooth normal covering map (i.e. the group of Deck transformations
acts transitively on each fiber), g is a Riemannian metric that is invariant under all Deck transformations,
then there exists a Riemannian metric π∗g on N such that π : (M,π∗g) → (N, g) is a Riemannian covering
map.

(4) Let ~e1, . . ., ~en be a basis of Rm, and

Γ = {k1~e1 + · · ·+ km~em | ki ∈ Z}

be the lattice generated by these vectors. Starting with the Euclidean metric g0 on Rm, we may get an
induced metric gΓ on the torus Rm/Γ so that π : (Rm, g0) → (Rm/Γ, gΓ) is a Riemannian covering map.
Prove: Two metrices gΓ and gΓ′ are isometric if and only if there exists an isometry of (Rm, g0) that sends
Γ to Γ′.

1.4 The Holonomy Group
Exercise 1.4. Let M be a connected smooth manifold with a connection ∇. Consider the holonomy group

Holp(TpM) = {P γ0,1 | γ : [0, 1] →M is a piecewise smooth closed curve with γ(0) = γ(1) = p}

which is obviously a subgroup of GL(TpM). Prove:

(1) For any p 6= q, Holp(TpM) = (P τ0,1)
−1Holq(TqM)P τ0,1, where τ is any piecewise smooth curve from p = τ(0)

to q = τ(1).

(2) If M is simply connected, then Holp(TpM) is connected.

(3) If (M, g) is a Riemannian manifold and ∇ metric compatible, then Holp(TpM) ⊂ O(TpM).

(4) Find the holonomy groups of the standard Rn, Sm and Hm.

(5) Find the relation between the holonomy groups of (M1 ×M2, g1 × g2) and (Mi, gi).

1.5 More Riemannian Metrics
Exercise 1.5. (1) An immersion f : N → Rm+1 of an m dimensional smooth manifold N into Rm+1 is called

a hypersurface. Suppose {U, u1, . . . , um} is a local chart on U so that the map f can be expressed locally
as

xk = fk(u1, . . . , um), 1 ⩽ k ⩽ m+ 1,

where (x1, . . . , xm+1) are the coordinates in Rm+1. Prove:

f∗g0

∣∣∣∣
U

=
∑
k,i,j

∂fk

∂ui
∂fk

∂uj
dui ⊗ duj .
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(2) A surface of revolution S in R3 can be formed by rotating a curve

γ(t) = (0, y(t), z(t)), (a < t < b)

in the yz plane with respect to z-axis, where we assume

y(t) > 0 and (y′(t))2 + (z′(t))2 6= 0

for all t. As a consequence, we can parametrize the surface as

S(t, θ) = (y(t) cos θ, y(t) sin θ, z(t)), (a < t < b, 0 < θ < 2π).

Write down the induced metric of g0 in R3 on S.

1.6 Riemannian Geometry of S2, Part I
Exercise 1.6. Consider S2 as a submanifold in R3. Using cylindrical coordinates θ and z we have seen

gS2 =
1

1− z2
dz ⊗ dz + (1− z2)dθ ⊗ dθ.

(1) Caculate the length of a great circle on S2.

(2) For any two points, calculate the distance between them. [Hint: By rotating you can always assume one
point is at the North pole, while the other point has θ = π.]

(3) Calculate the volume of Ka,b = {(z, θ) | a < z < b}, where −1 < a < b < 1.

(4) For any smooth vector field X = Xθ∂θ +Xz∂z, write down div(X).

(5) For any smooth function f = f(z, θ), write down ∇f and ∆f .

1.7 Different Models of Hyperbolic Spaces
Exercise 1.7.

(1) (Hyperboloid Model) We equip with Rm+1 the Lorentz inner product

〈x, y〉 := −x0y0 + x1y1 + · · ·+ xmym,

and let Hm = {x ∈ Rm+1 | 〈x, x〉 = −1, x0 > 0}. Show that 〈·, ·〉 induces a Riemannian metric gHm =
ι∗〈·, ·〉 on Hm.

(2) (Poincaré Disk Model) Let Bm be the open ball of radius 1 in Rm, equipped with a Riemannian metric

gBm =
4

(1− |x|2)2
(dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm).

Define a map
f : Hm → Bm,

(x0, x1, . . . , xm) 7→ 1

1 + x0
(x1, . . . , xm).

Prove: f is an isometry.

(3) (Poincaré Half-plane Model) Let Um be the upper half-space in Rm defined by x1 > 0, equipped with a
Riemannian metric

gUm =
1

(x1)2
(dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm).

Define a map
g : Bm → Um,

(x1, . . . , xm) 7→ (1− (x1)2 − · · · − (xm)2, 2x2, . . . , 2xm)

(x1 − 1)2 + (x2)2 + · · ·+ (xm)2
.

Prove: g is an isometry.
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1.8 The Laplace-Beltrami Operator
Exercise 1.8. Let (M, g) be a Riemannian manifold.

(1) Let f , h be smooth functions on (M, g). Check:

∆(fh) = f∆h− 2g(∇f,∇h) + h∆f.

(2) Let g = e2φg be a Riemannian metric on M that is conformal to g. Prove:

∆f = e−2φ[∆f − (m− 2)g(∇ϕ,∇f)],

where ∆ denote the Laplace-Beltrami operator associated to g.

(3) Find the relation between ∆Rm and ∆Sm−1 .

(4) Find the relation between ∆M×N and ∆M , ∆N .

1.9 Basic Spectral Geometry
Exercise 1.9. We say that λ is an eigenvalue of ∆ if there exist smooth function ϕ 6= 0 such that

∆ϕ = λϕ.

The function ϕ is called an eigenfunction of ∆ corresponding to λ. Now suppose (M, g) is a connected compact
Riemannian manifold. Prove:

(1) All eigenvalues of ∆ are non-negative real numbers.

(2) λ = 0 is always an eigenvalue, whose eigenfunctions are constants.

(3) If ϕ is an eigenfunction of λ > 0, then
∫
M

ϕdVol = 0.

(4) If ϕ1 and ϕ2 are eigenfunctions of different eigenvalues, then
∫
M

ϕ1ϕ2dVol = 0.

(5) Equip S1 × S1 with the standard metric. Find all its eigenvalues and corresponding eigenfunctions.

1.10 Riemannian Manifold with Boundary
Exercise 1.10. In Chapter 4 we briefly discussed Riemannian manifold with boundary.

(1) Prove divergence theorem II.

(2) Prove Green’s formula II.

(3) We call λ ∈ R a Dirichlet eigenvalue of ∆ if there exist smooth function ϕ 6= 0 such that

∆ϕ = λϕ in M and ϕ = 0 on ∂M.

(a) Prove: All Dirichlet eigenvalues of ∆ are positive real numbers.

(b) Prove: If ϕ1 and ϕ2 are eigenfunctions of different eigenvalues, then
∫
M

ϕ1ϕ2dVol = 0.

1.11 Killing Vector Fields
Exercise 1.11. Any vector field X defines a local family of diffeomorphisms

φXt : U ⊂M → φ(U) ⊂M,

p 7→ φXt (p) = γp,Xp
(t)

for −ε < t < ε, which satisfies φXt ◦ φXs = φXt+s for t, s, t + s ∈ (−ε, ε). Now suppose (M, g) is a Riemannian
manifold. We say X is a Killing vector field if these φXt ’s are isometries.
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(1) Let X, Y , Z ∈ Γ∞(TM). Prove: The following statements are equivalent:

(a) X is a Killing vector field.
(b) LXg = 0.
(c) X〈Y, Z〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉.
(d) 〈∇YX,Z〉+ 〈∇ZX,Y 〉 = 0.
(e) The (1, 1)-tensor field ∇X defined by ∇X : Y 7→ ∇YX is skew-symmetric.

(2) Let X be a Killing vector field, and p ∈ M is a given point. Prove: X is uniquely determined by X(p)
and ∇X(p).

(3) Prove: The set of Killing vector fields, denoted by iso(M, g), is a Lie subalgebra of (Γ∞(M), [·, ·]).

(4) Prove: dim iso(M, g) ⩽ (m+ 1)m

2
, where m = dimM .

(5) Now suppose M is compact, in which case the isometry group Iso(M, g) is known to be a Lie group.
Assume this. Prove: iso(M, g) is the Lie algebra of Iso(M, g).

1.12 Bi-invariant Metric on Lie Groups
Exercise 1.12. A Riemannian metric on a Lie group G is left-invariant if

〈Xg, Yg〉g = 〈(dLh)gXg, (dLh)gYg〉hg

holds for all g, h ∈ G and all Xg, Yg ∈ TgG.

(1) Take an arbitrary inner product 〈·, ·〉e on TeG. Check:

〈Xg, Yg〉 := 〈(dLg−1)gXg, (dLg−1)gYg〉e

defines a left-invariant Riemannian metric on G.

(2) Write down the definition for a Riemannian metric to be right-invariant, and construct a right-invariant
Riemannian metric on G.

(3) A Riemannian metric on a Lie group G is bi-invariant if it is both left-invariant and right-invariant. Prove:
If 〈·, ·〉 is a bi-invariant Riemannian metric on G, then 〈·, ·〉e is a conjugation-invariant inner product on
TeG.

(4) Conversely, show that if 〈·, ·〉e is a conjugation-invariant inner product on TeG, then the left-invariant
Riemannian metric defined in (1) is bi-invariant.

(5) Now suppose G is compact, so that there exists a Haar measure on G, which can be think of as a volume
form ω that is both left-invariant and right-invariant:

L∗
gω = ω = R∗

gω, ∀g ∈ G.

Prove: For any left-invariant metric on G, the new inner product

〈Xg, Yg〉new
g =

∫
G

〈(dRh)gXg, (dRh)gYg〉old
gh ω, ∀g ∈ G, and Xg, Yg ∈ TgG

defines a bi-invariant Riemannian metric on G.
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Curvatures

2.1 Isometry Preserves Geometry

Exercise 2.1. Let ϕ : (M, g) → (M̃, g̃) be a local isometry. Prove:
(1) Given a coordinate system (x1, . . . , xm) near a point p of M , one defines a coordinate system (x̃1, . . . , x̃m)

near ϕ(p) by letting x̃i = xi ◦ ϕ−1. Prove: ϕ∗g̃ij = gij .

(2) Prove: For vector fields X,Y ∈ Γ∞(TM), by restricting to neighborhoods of p and ϕ(p), one has
dϕ(∇XY ) = ∇̃dφ(X)dϕ(Y ).

(3) State and prove the fact “curvature tensor is invariant under local isometry”.

(4) State and prove the fact “sectional curvature is invariant under local isometry”.

(5) Prove that the natural action of the isometry group Iso(Sm, ground) on the Grassmannian bundle G2(TS
m)

is transitive, and thus (Sm, ground) has constant sectional curvature.

2.2 Riemannian Geometry of the Hyperbolic Space: Part II
Exercise 2.2. Let Hm be the upper half-space in the Rm, i.e.

Hm = {(x1, . . . , xm) ∈ Rm | xm > 0},

equipped with the hyperbolic metric

gHm =
1

(xm)2
(dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm).

(1) Calculate the Christoffel’s symbols.

(2) Calculate the Riemannian curvature tensor, and show that Hm has constant sectional curvature −1.

(3) For m = 2 and ε > 0, find the volume of the vertical stripe

Sε = {(x, y) | |x| < 1, ε < y <∞}.

2.3 Riemannian Geometry of Product Manifolds
Exercise 2.3.

• Let (M1, g1) and (M2, g2) be Riemannian manifolds. Consider the product Riemannian manifold (M1 ×
M2, π

∗
1g1 + π∗

2g2), where
πi :M1 ×M2 →Mi

be the canonical projections. For any (p, q) ∈M1 ×M2, we let

ιq1 :M1 →M1 ×M2,

p 7→ (p, q)

be the embedding of M1 into M1 ×M2 as M1 ×{q}. Similarly one define ιp2 :M2 →M1 ×M2. Denote by
∇i and Rmi the Levi-Civita connection and Riemann curvature tensor on Mi.

6
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(1) Prove: The Levi-Civita connection ∇ on M1 ×M2 satisfies

∇X1+X2
(Y1 + Y2)(p, q) = dιq1(∇1

X1
Y1)p + dιp2(∇2

X2
Y2)q

for any X1, Y1 ∈ Γ∞(TM1), X2, Y2 ∈ Γ∞(TM2).
(2) Prove: The Riemann curvature tensor of M1 ×M2 is

Rm(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2) = Rm1(X1, Y1, Z1,W1) +Rm2(X2, Y2, Z2,W2)

for any X1, Y1, Z1,W1 ∈ Γ∞(TM1), X2, Y2, Z2,W2 ∈ Γ∞(TM2).
(3) Write down similar formula for the Ricci tensor, the Weyl tensor and the scalar curvature of M1×M2

in terms of those of M1 and M2.

• Now consider Sm × Sn endowed with the canonical metric.

(4) Prove: All sectional curvatures of Sm × Sn lie in [0, 1].
(5) Find the Ricci and Weyl tensor of Sm × Sn.
(6) When will it be Einstein? When will it be locally conformally flat?
(7) Find the scalar curvature of Sm × Sn.

2.4 Polarization Formula for Riemann Curvature Tensor

Exercise 2.4. Denote K̃(X,Y ) = Rm(x, Y,X, Y ).

(1) Find a formula for Rm(X,Y,X,W ) in terms of K̃.

(2) Prove:

6Rm(X,Y, Z,W ) = K̃(X + Z, Y +W )− K̃(Y + Z,X +W )− K̃(X,Y +W )− K̃(Z, Y +W )

− K̃(X + Z, Y )− K̃(X + Z,W ) + K̃(Y,X +W ) + K̃(Z,X +W )

+ K̃(Y + Z,X) + K̃(Y + Z,W ) + K̃(X,W ) + K̃(Z, Y )− K̃(Y,W )− K̃(Z,X).

2.5 Curvature-like Tensors as Curvature Tensors
Exercise 2.5.

(1) Fix r. For 1 ⩽ i ⩽ j ⩽ m, choose vectors hij ∈ Rr, and let hji = hij . Define

Rijkl = 〈hik, hjl〉 − 〈hil, hjk〉,

where 〈·, ·〉 is the standard inner product on Rr. Prove: Rijklei ⊗ ej ⊗ ek ⊗ el is a curvature-like tensor,
where e1, . . . , em is a basis of (Rm)∗.

(2) Prove: Fix m, for r large enough, any curvature-like tensor on Rm arises in this way.

2.6 Riemannian Geometry under Conformal Change
Exercise 2.6. Let (M, g) be a Riemannian manifold of dimension m. Let g = e2φg be a Riemannian metric
that is conformal to g. In what follows, everything without a “bar” (e.g. ∇, Rm, S, etc) is for (M, g), and
everything with a “bar” (e.g. ∇, Rm, S, etc) is for (M, g).

(1) Prove: ∇XY = ∇XY + (Xϕ)Y + (Y ϕ)X − g(X,Y )∇ϕ.

(2) Prove: Rm = e2φ[Rm− g ∧⃝(∇dϕ− dϕ⊗ dϕ+ 1
2 |dϕ|

2g)].

(3) Prove: S = e−2φ[S + 2(m− 1)∆ϕ− (m− 2)(m− 1)|∇ϕ|2].

(4) The conformal Laplacian is defined to be the operator

Lf = ∆f +
(m− 2)S

4(m− 1)
f.

Check: For any f ∈ C∞(M),
Lf = e−

m+2
2 φL(e

m−2
2 φf).
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(5) Deduce the Yamabe equation: If m > 2, and g = u
4

m−2 g, then

4
m− 1

m− 2
∆u+ S · u = S · u

m+2
m−2 .

2.7 Riemannian Geometry of Surfaces
Exercise 2.7. Let M be a two dimensional manifold, i.e. a surface, with Riemannian metric g.

(1) Prove: Near each point p, there is a coordinate system so that g is of the form
g = E(x1, x2)dx1 ⊗ dx1 +G(x1, x2)dx1 ⊗ dx2.

(2) Express the sectional curvature of M at each point using the functions E, G above. [You can use either
direct computation or the moving frame.]

2.8 Weyl Tensors
Exercise 2.8.

(1) Let (M, g) be of constant sectional curvature. Prove: R×M is locally conformally flat.

(2) Again suppose (M, g) has constant sectional curvature. Suppose ψ is a positive smooth function on R.
Prove: The warped product R×ψ M is locally conformally flat.

(3) Find the Weyl tensor of S2 × S2 and R2 × S2.

2.9 Riemannian Geometry of Submanifolds: Part I
Exercise 2.9. Let (M, gM ) be a Riemannian manifold, and ι : M ↪→ M be an embedded submanifold, with
induced Riemannian structure gM = ι∗gM . Using the Riemannian structure of M , for each point p ∈M ⊂M ,
any Xp ∈ TpM can be written uniquely as

Xp = X
T

p +X
⊥
p ,

where XT

p ∈ TpM and X
T

p ∈ (TpM)⊥. In what follows we assume X,Y, Z,W ∈ Γ(TM) are smooth tangent
vector fields on M , and ξ, ζ ∈ Γ(TM⊥) are smooth normal vector fields on M , i.e. ξp, ζp ∈ (TpM)⊥ for all
p ∈M and are smooth.

(1) Let ∇ be the Levi-Civita connection of (M, gM ). Explain: ∇XY is well-defined.

(2) Let ∇XY = (∇XY )T. Check: ∇ is the Levi-Civita connection on M .

(3) Set S(X,Y ) = (∇XY )T. Check: S is C∞(M)-linear and symmetric. (S is called the second fundamental
form of M .)

(4) Define the shape operator Sξ : TpM → TpM by
〈Sξ(X), Y 〉 = 〈S(X,Y ), ξ〉, ∀Y ∈ Γ∞(TM).

Prove: Sξ is symmetric.

(5) Prove: Sξ(X) = −(∇Xξ)
T.

(6) Let Rm, Rm be the Riemannian curvature tensor on M , M . Prove: (Gauss equation)
Rm(X,Y, Z,W ) = Rm(X,Y, Z,W )− 〈S(X,Z), S(Y,W )〉+ 〈S(X,W ), S(Y, Z)〉.

(7) Use the Gauss equation to prove: (Sm, gSm) has constant curvature 1.

(8) Verify the Codazzi equation
Rm(X,Y, Z, ξ) = −〈(∇XS)(Y, Z), ξ〉+ 〈(∇Y S)(X,Z), ξ〉,

where (∇XS)(Y, Z) := (∇X(S(Y, Z)))⊥ − S(∇XY, Z)− S(Y,∇XZ).

(9) We will denote ∇⊥
Xξ = (∇Xξ)

⊥ and R⊥(X,Y )ξ = −∇⊥
X∇⊥

Y ξ + ∇⊥
Y∇⊥

Xξ + ∇⊥
[X,Y ]ξ. Verify the Ricci

equation
Rm(X,Y, ξ, ζ) = 〈R⊥(X,Y )ξ, ζ〉+ 〈SξSζX − SζSξX,Y 〉.

[These three equations are the fundamental equations in submanifold geometry.]
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2.10 Riemannian Geometry of Lie Groups: Part II
Exercise 2.10. Let G be a Lie group endowed with a bi-invariant Riemannian metric g. Suppose X,Y, Z ∈ g
are left-invariant vector fields on G.

(1) Prove: 〈[X,Y ], Z〉 = 〈[Y, Z], X〉.

(2) Prove: ∇XX = 0.

(3) Prove: ∇XY =
1

2
[X,Y ].

(4) Prove: R(X,Y )Z = −1

4
[[X,Y ], Z].

(5) Let X, Y be orthonormal, and Πp ∈ TpM be the 2-dim plane spanned by Xp, Yp. Prove: K(Πp) =
1

4
‖[X,Y ]‖2.

(6) Prove: G has positive Ricci curvature if the center of G is discrete.

2.11 Riemannian Submersions
Exercise 2.11. Let (M, gM ) and (M, gM ) be Riemannian manifolds, and f : M → M a submersion. For
any p ∈ M , we will call Vp = ker(dfp) ⊂ TpM the vertical space at p, and Hp = V ⊥

p ⊂ TpM the horizontal
space at p. For any vector Xp ∈ TpM , we will denote Xv the vertical component of X. Note that dfp, when
restricted to Hp, is a linear isomorphism. For any X ∈ Γ∞(TM), its horizontal lift is the horizontal vector field
X defined by dfp(Xp) = Xf(p). The submersion f is said to be a Riemannian submersion if for any p ∈ M ,
dfp : Hp → Tf(p)M is a linear isometry.

(1) Prove: For any X,Y ∈ Γ(TM),
∇XY = ∇XY +

1

2
[X,Y ]v.

(2) Prove: For any X, Y , Z, W ∈ Γ(TM),

Rm(X,Y , Z,W ) = Rm(X,Y, Z,W )− 1

4
〈[X,Z]v, [Y ,W ]v〉+ 1

4
〈[Y , Z]v, [X,W ]v − 1

2
〈[Z,W ]v, [X,Y ]v〉.

(3) Let Π be a plane spanned by orthogonal unit vectors Xp, Yp ∈ TpM and Π the plane spanned by Xp, Y p.
Prove: K(Π) = K(Π) +

3

4
|[Xp, Y p]

v|2.

2.12 Gauss-Bonnet-Chern in Dimension 4
Exercise 2.12. The famous Gauss-Bonnet-Chern formula says that if (M, g) is an orientable closed Riemannian
manifold of dimension m = 2k, then

1

2mπm/2(m/2)!

∫
M

Ω = χ(M),

where χ(M) is the Euler characteristic of M , and Ω is the following m-form

Ω =
∑
σ∈Sm

(−1)σΩ
σ(1)
σ(2) ∧ Ω

σ(3)
σ(4) ∧ · · · ∧ Ω

σ(m−1)
σ(m) ,

where Sm is the permutation group of (1, . . . ,m), and Ωij is the curvature two form associated to any orthonormal
basis.

(1) For m = 2, deduce 1

2π

∫
M

Kdx = χ(M).

(2) For m = 4, deduce 1

32π2

∫
M

(|Rm|2 − 4|Rc|2 + S2)dx = χ(M).
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(3) Prove: If (M, g) is an Einstein manifold of dimension 4, then χ(M) ⩾ 0, and the equality holds if and
only if (M, g) is flat.

(4) Prove: If (M, g) is a locally conformally flat manifold of dimensiona 4, then

χ(M) =
1

16π2

∫
M

(
−|E|2 + 1

12
S2

)
dx.

(5) Prove: One can find an orthonormal frame so that R1213 = R1214 = R1223 = R1224 = R1323 = R1314 = 0.

(6) Prove: If M is a compact orientable Riemannian manifold of dimension 4 which admits a metric of positive
sectional curvature, then χ(M) > 0.



Problem Sheet 3

Geodesics

3.1 Examples of Geodesics
Exercise 3.1.

(1) Consider (S2, ground).

(a) Show that the “equator” γ(θ) = (cos θ, sin θ, 0) is a geodesic.
(b) Show that the “meridian” γ(z) = (

√
1− z2, 0, z) is not a geodesic, then find a correct parametrization

so that it becomes a geodesic.

(2) Describe the relations between the geodesics on the product Riemannian manifold (M1 × · · · ×Mk, g1 ×
· · · × gk) with the geodesics on (Mi, gi)’s.

(3) Consider the hyperbolic space H2 = {(x, y) | y > 0} endowed with the hyperbolic metric g =
1

y2
(dx ⊗

dx+ dy ⊗ dy).

(a) Prove: The maps ϕ(x, y) = (−x, y) and φ(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
are isometries.

(b) Deduce that the upper unit semicircle and the positive y-axis are geodesics.
(c) Prove: The maps (x, y) 7→ (x+ a, y) and (x, y) 7→ (bx, by) are isometries for any a and any b > 0.
(d) Figure out all geodesics on H2. [Write down the correct parametrization.]
(e) Is (H2, g) complete?

(4) Describe geodesics on Lie groups (endowed with a bi-invariant metric).

3.2 Torsion Free Connection v.s. Geodesics
Exercise 3.2. Let M be a smooth manifold and let ∇, ∇′ be two linear connections on M . For any vector
fields X,Y ∈ Γ(TM), define

A(X,Y ) = ∇XY −∇′
XY.

(1) Prove: A is a (0, 2)-tensor.

(2) Prove:

(a) ∇ and ∇′ have the same torsion if and only if
A(X,Y ) = A(Y,X), ∀X,Y ∈ Γ∞(TM).

(b) ∇ and ∇′ have the same geodesics if and only if
A(X,Y ) = −A(Y,X), ∀X,Y ∈ Γ∞(T,M).

(c) For any linear connection ∇, there is a unique torsion free connection ∇′ with the same geodesics.

(3) Suppose g is a Riemannian metric on M , and suppose ∇ is a g-compatible linear connection.

(a) Prove: ∇′ is g-compatible if and only if
g(A(X,Y ), Z) = −g(Y,A(X,Z)), ∀X,Y, Z ∈ Γ∞(TM).

(b) Give another proof of the uniqueness part of the fundamental theorem in Riemannian geometry.

11
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3.3 Examples of the Exponential Maps
Exercise 3.3. For each of the following, write down the exponential map expp:

(1) M = Rn with standard g0, and p = 0 the origin.

(2) M = H2 (the Poincaré upper plane), and p = (0, 1).

(3) M = S2 with the standard round metric, and p = the North pole.

(4) M = S1 × R with the standard product metric, and p = ((1, 0), 0).

(5) M be the standard paraboloid defined by z = x2 + y2 in R3, and p = (0, 0, 0).

(6) M = G (equipped with bi-invariant Riemannian metric) a matrix Lie group, and p = I.

3.4 Riemannian Geometry of Surfaces of Revolution
Exercise 3.4. Consider the surface of revolution

S(x, θ) = (y(x) cos θ, y(x) sin θ, z(x)), a < x < b, 0 < θ < 2π,

endowed with the canonical metric

g = (ẏ(x)2 + ż(x)2)dx⊗ dx+ y(x)2dθ ⊗ dθ.

For simplicity, in what follows we will assume ẏ(x)2 + ż(x)2 = 1.

(1) What is the geometric meaning of ẏ(x)2 + ż(x)2 = 1?

(2) What is the Gaussian curvature at each point?

(3) Write down the equations for a curve γ : x = x(t), θ = θ(t) to be a geodesic.

(4) Check that the meridians γ : x(t) = t, θ(t) = c are geodesics.

(5) Find the condition for a parallel γ : x(t) = c, θ(t) = t to be a geodesic.

(6) Now suppose γ : x = x(t), θ = θ(t) be a normal geodesic that is neither a meridian nor a parallel. At any
point γ(t), let β(t) be the angle between γ and the parallel that passes γ(t). Prove: cosβ(t) = y(x(t))θ̇(t).

(7) Prove the Clairaut relation: y(t) cosβ(t) =constant along γ

3.5 Riemannian Submersion: Part II
Exercise 3.5. Let f : (M, gM ) → (M, gM ) be a Riemannian submersion.

(1) Let γ be any curve in M , and γ = f ◦ γ. Prove: Length(γ) ⩾ Length(γ).

(2) Let γ be a geodesic of M emanating from p which is a horizontal lift of γ.

(3) Conversely, show that if γ is a geodesic in M such that γ̇(0) is horizontal, then γ̇(t) is horizontal for all t,
and γ = f ◦ γ is a geodesic in M .

3.6 Completeness of Riemannian Metric: Examples
Exercise 3.6.

(1) Suppose (M, g) satisfies “there exists ε0 > 0 so that for any p ∈ M and Xp ∈ TpM , there is a normal
geodesic γ : [0, ε0] →M with γ(0) = p, γ̇(0) = Xp”. Prove: (M, g) is complete.

(2) Suppose (M, g) is complete and g̃ is another Riemannian metric on M with g̃ ⩾ g. Prove: (M, g̃) is
complete.

(3) Let (M, g) be a Riemannian manifold and there exists a proper [i.e. the pre-images of compact sets are
compact] Lipschitz function f :M → R. Prove: (M, g) is complete.
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(4) Prove: (M, g) is complete if and only if for some fixed r, the closed geodesic ball Br(p) is compact for any
p ∈M .

(5) A Riemannian homogeneous space is a Riemannian manifold such that its isometry group acts transitively
on it, i.e. for any p, q ∈M there exists an isometry ϕ of (M, g) so that ϕ(p) = q. Prove: Any Riemannian
homogeneous space is complete.

3.7 Completeness of Riemannian Metrics II: Existence
Exercise 3.7.

(1) Let’s prove the existence of a complete Riemannian metric on any smooth manifold M . In fact, we shall
prove that given any Riemannian metric g, there exists a complete Riemannian metric g′ that is conformal
to g. Without loss of generality, suppose M is non-compact and g is incomplete.

(a) Let r(p) = sup{r | Br(p) is compact}. Prove: 0 < r(p) <∞ for all p ∈M .
(b) Check: |r(p)− r(q)| < dist(p, q), and conclude that r is continuous.

(c) Prove: There exists a smooth function ω on M so that ω(p) > 1

r(p)
.

(d) Define a new metric g′ on M by g′ = ω2g. Denote by B′
r(p) the closed geodesic ball of radius r

around p with respect to the new metric g′. Prove: B′
p

(
1

3

)
⊂ Bp

(
r(p)

2

)
for all p.

(e) Conclude that (M, g′) is complete.

(2) Next let’s prove that if every Riemannian metric on M is complete, then M is compact. Equivalently, we
want to construct a incomplete Riemannian metric on any non-compact smooth manifold. Again we shall
prove a stronger result: for any (M, g) with M non-compact, there is a Riemannian metric g′ conformal
to g which is incomplete. Without loss of generality, assume g is complete.

(a) Fix p ∈M and let ω be a smooth function on M so that ω(q) > dist(p, q). [The existence is the same
as (1)(c) above.] Let g′ = e−2ωg. Prove: Under g′ the new distance dist′(p, q) < 1 for all q.

(b) Conclude that (M, g′) is incomplete.

3.8 Rays in Complete Noncompact Riemannian Manifolds
Exercise 3.8. Let (M, g) be a complete noncompact Riemannian manifold.

• A normal geodesic γ : [0,+∞) →M is called a ray if dist(γ(a), γ(b)) = |a− b| for any a, b ⩾ 0.

• A normal geodesic γ : (−∞,∞) →M is called a geodesic line if dist(γ(a), γ(b)) = |a− b| for any a, b ∈ R.

(1) Prove: From any point p ∈M there exists a ray so that γ(0) = p.

(2) We say M is discontinuous at infinity if there exists a compact subset K in M so that M \K contains
at least two non-compact connected components. Prove: If (M, g) is complete and M is discontinuous at
infinity, then M contains a geodesic line.

(3) Construct a complete noncompact Riemannian manifold on which there is no geodesic line.

(4) Now let γ1, γ2 be two geodesic rays on M . We say γ1, γ2 are asympototic if there exists C ∈ R so that
dist(γ1(t), γ2(t)) < C for all t ⩾ 0. This defines an equivalent relation on the set of geodesic rays. We will
denote the set of equivalent classes by M(∞), and call it the sphere at infinity of M . Figure out M(∞)
for M = Rn, S1 × R1 and H2, each equipped with the standard Riemannian metric.

3.9 Existence of Variation
Exercise 3.9. Let V (t) a piecewise smooth vector field along a smooth curve γ : [a, b] →M .

(1) Generalize the concept of variation to allow piecewise variation field.

(2) Prove: There exists a variation of γ whose variation field is V .

(3) Prove: If V (a) = 0, V (b) = 0, then the variation could be chosen to be proper.
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3.10 Second Variation of Length
Exercise 3.10. Let γ : [a, b]t →M be a smooth curve

f : [a, b]× (−ε, ε)v × (−δ, δ)w →M

be a smooth variation of γ with two parameters v, w. Denote γv,w(t) = f(t, v, w) and

ft(t, v, w) = df(t,v,w)

(
∂

∂t

)
, fv(t, v, w) = df(t,v,w)

(
∂

∂v

)
, fw(t, v, w) = df(t,v,w)

(
∂

∂w

)
as usual and let

V (t) = df(t,0,0)

(
∂

∂v

)
, W (t) = df(t,0,0)

(
∂

∂w

)
be the corresponding variation fields of the two parameter directions.

(1) Prove:
∂2

∂w∂v
L(γv,w) =

∫ b

a

{
〈∇̃∂/∂tfv, ∇̃∂/∂tfw〉+ 〈R(ft, fw)ft, fv〉+ 〈∇̃∂/∂t∇̃∂/∂wfv, ft〉

− 1

|ft|2
〈∇̃∂/∂tfv, ft〉〈∇̃∂/∂tfw, ft〉

}
dt

(2) Let γ be a normal geodesic, prove

∂2

∂w∂v

∣∣∣∣
(0,0)

L(γv,w) =

∫ b

a

(〈∇γ̇V,∇γ̇W 〉+ 〈R(γ̇,W )γ̇, V 〉 − γ̇〈γ̇, V 〉γ̇〈γ̇,W 〉)dt+ 〈∇̃W fv, γ̇〉|ba.

(3) Let V ⊥, W⊥ be the orthogonal component of V , W with respect to γ̇, i.e.

V ⊥ = V − 〈V, γ̇〉γ̇, W⊥ =W − 〈W, γ̇〉γ̇.

Show that

∂2

∂w∂v

∣∣∣∣
(0,0)

L(γv,w) =

∫ b

a

(〈∇γ̇V
⊥,∇γ̇W

⊥〉+ 〈R(γ̇,W⊥)γ̇, V ⊥〉)dt+ 〈∇̃W fv, γ̇〉|ba.



Problem Sheet 4

Jacobi Field

4.1 Jacobi Fields for Manifolds with Constant Sectional Curvature
Along γ

Exercise 4.1. Let (M, g) be a Riemannian manifold, and γ : [0, l] → M a normal geodesic, where we assume
l 6= kπ/

√
κ if κ > 0. Suppose M has constant ssectional curvature κ along γ, i.e. K(Πγ(t)) = κ for any

2-dimensional plane Πγ(t) 3 γ̇(t).

(1) Prove: The Jacobi field V along γ with V (0) = 0 and V (l) = Xl ∈ (γ̇(l))⊥ is

V (t) =
snκ(t)

snκ(l)
X(t),

where X is the parallel vector field along γ with X(l) = Xl.

(2) Given any X0 ∈ Tγ(0)M and Xl ∈ Tγ(l)M , find the Jacobi field with V (0) = X0, V (l) = Xl.

4.2 Characterizing Constant Curvature via Jacobi Field
Exercise 4.2. We say a vector field Y along γ is almost parallel if there is a smooth function f so that
Y (t) = f(t)X(t), where X is parallel along γ. As we have seen, any normal Jacobi field along a geodesic on a
constant curvature space is almost parallel.

(1) Suppose γ : [0, l] → M is a geodesic in (M, g) with γ(0) = p, so that any normal Jacobi field along γ is
almost parallel. Let V ⊂ TpM , and V0 a small neighborhood of 0 in V such that expp : V0 → N = expp(V0)
is a diffeomorphism. Suppose γ([0, l]) ⊂ N . Prove: P γ0,l(V ) = Tγ(l)N .

(2) Suppose for any geodesic γ with γ(0) = p, any normal Jacobi field along γ is almost parallel. Prove: for
any pair wise orthogonal vectors u, v, w ∈ TpM , 〈R(u, v)u,w〉 = 0.

(3) Suppose m ⩾ 3. Prove: If any normal Jacobi field along any geodesic in M is almost parallel, then M has
constant sectional curvature.

4.3 Square of Distance in Normal Coordinates
Exercise 4.3. Consider two geodesics γ1(t) = expp(tv) and γ2(t) = expp(tw) emanating from p. Let g(s) =
d2(γ1(s), γ2(s)). To estimate L(s) for s small, consider the varation

f(t, s) = σs(t) := expγ1(s)(t exp
−1
γ1(s)

(γ2(s))).

Let ft(t, s) = dft,s(∂/∂t) and fs(t, s) = dft,s(∂/∂s) as usual. Note that for s small, σs is the minimizing geodesic
from γ1(s) to γ2(s), and g(s) = ‖σ̇s(t)‖2 = ‖ft(t, s)‖2. [In what follows, although we use usual notation for the
connection, they should be understood as the induced connection.]

(1) Show that ft(t, 0) = 0, fs(0, s) = γ̇1(s), fs(1, s) = γ̇2(s).

(2) Show that (∇∂/∂tft)(t,s) = 0, (∇∂/∂sfs)(0,s) = 0, (∇∂/∂sfs)(1,s) = 0.

15
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(3) Show that for each fixed s, fs(t, s) is a Jacobi field along γs, and (∇∂/∂t∇∂/∂tfs)t,0 = 0. Conclude that
fs(t, 0) is linear and thus fs(t, 0) = v + t(w − v).

(4) Show that g′(0) = 0, g′′(0) = 2|v − w|2.

(5) Show that (∇∂/∂t∇∂/∂t∇∂/∂sfs)(t,0) = 0, which implies (∇∂/∂sfs)(t,0) is linear in t. Conclude that
(∇∂/∂sfs)(t,0) = 0, (∇∂/∂t∇∂/∂sfs)(t,0) = 0, (∇∂/∂s∇∂/∂sft)(t,0) = 0, and g′′′(0) = 0.

(6) Show that g′′′′(0) = 8Rm(v, w, v, w).

(7) Conclude that g(s) = |v − w|2s2 + 1

3
Rm(v, w, v, w)s4 +O(s5) and thus

d(γ1(s), γ2(s)) = |v − w|s+ 1

6

Rm(v, w, v, w)

|v − w|
s3 +O(s4).

4.4 Expansion of Metric in Normal Coordinates
Exercise 4.4.

(1) Prove: In a Riemannian normal coordinates, near p we have

gij = δij −
1

3
Rikjlx

kxl − 1

6
Rikjl;rx

kxlxr +O(|x|4).

What can you say about the coefficients of higher order terms?

(2) Expand det(gij) up to order 3 near p.

(3) Prove Bianchi Identity II using normal coordinates.

(4) Prove: A chart is a Riemannian normal coordinate system if and only if for any i, gijxj = xi.

4.5 Locally Symmetric Space
Exercise 4.5. Let (M, g) be a locally symmetric space, i.e. if ∇XR = 0 for all X ∈ Γ∞(TM). Let γ : [0, a] →M
be a geodesic in M with p = γ(0), Xp = γ̇(0).

(1) Let X, Y , Z be vector fields that are parallel along γ. Prove: R(X,Y )Z is also parallel along γ.

(2) Define a linear transformation KXp : TpM → TpM by

KXp(Yp) = R(Xp, Yp)Xp.

Prove: KXp
is self-adjoint.

(3) Let λ1, . . . , λm be eigenvalues of KXp , with corresponding eigenvectors e1, . . . , em ∈ TpM . Let ej(t) be
the parallel transport of ej along γ. Prove: For all t ∈ [0,∞), we have

Kγ̇(t)(ei(t)) = λiei(t), i = 1, . . . ,m.

(4) Let X(t) = Xi(t)ei(t) be a Jacobi field along γ. Show that the Jacobi equation becomes

Ẍi(t) + λiX
i = 0, i = 1, . . . ,m.

(5) Conclude that the conjugate points of p along γ are given by

γ

(
πk√
λi

)
, k = 1, 2, . . . ,

where λi’s are positive eigenvalues of KXp
.
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4.6 More on Cut Locus
Exercise 4.6. Let (M, g) be complete.

(1) Prove: The function f : SM → R ∪ {∞} defined by

f(Xp) =

{
t0, if γp,Xp

(t0) is the cut point of p along γ,
+∞, if p has no cut point along γp,Xp

.

is continuous.

(2) For any p ∈M , Cut(p) is closed.

(3) M is compact if and only if Cut(p) is nonempty and compact for any p ∈M .

(4) Let Σ(p) = {tXp | Xp ∈ SpM, 0 ⩽ t < f(Xp)}. Prove: expp : Σ(p) → expp(Σ(p)) is a diffeomorphism.

(5) Prove: M = expp(Σ(p)) ∪ Cut(p) and expp(Σ(p)) ∩ Cut(p) = ∅.

(6) We call a point q ∈M a regular cut point if there exists at least two minimal geodesic from p to q. Prove:
The set of regular cut points is a dense subset of Cut(p).

4.7 Smoothness of Distance Function
Exercise 4.7. For any p ∈M , consider the distance square function

f(q) =
1

2
dist(p, q)2.

(1) For (M, g) = (Sm, gSm) the standard sphere, is f a smooth function?

(2) Argue that f is smooth on M \ Cut(p).

(3) For any q ∈M \ Cut(p), find (∇f)(q).

(4) For any q ∈ M \ Cut(p) and Yq ∈ TqM , let X be a Jacobi field along γq, the minimal geodesic from p to
q, so that X(0) = 0, X(dist(p, q)) = Yq. Prove: ∇2f(Yq, Yq) = dist〈∇γ̇q(dist(p,q))X,X(dist(p, q))〉.

(5) Prove: f is not C1 function at regular cut points.

(6) Can f be everywhere smooth on M if M is compact?

4.8 Convex Functions on Riemannian Manifolds
Exercise 4.8. • Let (M, g) be a Riemannian manifold. A function f : M → R is said to be a convex

function if for any geodesic γ : [a, b] →M , the function f ◦ γ : [a, b] → R is convex.

(1) Prove: If f is a convex function on M , then for any c ∈ R, the sublevel set Mc = {p ∈M | f(p) < c}
is a totally convex subset of M .

(2) Prove: If f is smooth, then f is convex if and only if its Hessian ∇2f is positive semidefinite.
(3) Let p ∈M be an arbitrary point, and dp(q) = dist(p, q) is the distance function from p. Prove: There

exists an neighborhood U of p so that the distance square function d2p is convex on (U, g).

• Now suppose (M, g) is a complete simply-connected Riemannian manifold with non-positive sectional
curvature.

(4) Prove: the distance square function

d2 :M ×M → R,
d2(p, q) = [dist(p, q)]2

is convex on M ×M .
(5) Conclude that for any p ∈M , the function d2p is a convex function on M .



Topics of Final Projects

1. Myers-Steenrod theorem: The isometry group of any Riemannian manifold is a Lie group.

2. Cartan-Janet local isometry theorem: Any analytic m-dimensional Riemannian manifold admits an ana-
lytic local isometric embedding into Rm(m+1)/2.

3. Gromov compactness theorem: Let (Mi, gi) be a sequence of closed Riemannian manifolds with Ric ⩾
(m− 1)c and diam(M, g) ⩾ δ. Then there is a subsequence (Mki , gki) that converges, with respect to the
Gromov-Hausdorff distance, to a compact metric space.

4. Lusternik-Fet closed geodesic theorem: Any compact Riemannian manifold (M, g) admits a nontrivial
closed geodesic.

5. Weyl-Schouten theorem: Let (M, g) be a Riemannian manifold. Ifm ⩾ 4, then (M, g) is locally conformally
flat if and only if the Weyl tensor W = 0. If m = 3, then (M, g) is locally conformally flat if and only if
(∇XA)(Y, Z)− (∇YA)(X,Z) = 0, ∀X,Y, Z ∈ Γ∞(TM), where A is the Schouten tensor.

6. Cheeger-Gromoll soul theorem: For any complete noncompact connected Riemannian manifold (M, g) with
non-negative sectional curvature, there exists a totally convex compact submanifold without boundary
(known as the soul) whose normal bundle is diffeomorphic to M .

7. Cartan-Ambrose-Hicks theorem: Let (M, g) and (M̃, g̃) be complete Riemannian manifolds and suppose
M is simply connected. Suppose L : (TpM, gp) → (Tp̃M̃, g̃p̃) is an linear isometry, and assume that for
any broken geodesic (i.e. a curve that is piecewise minimizing geodesic) γ, we have, as in Cartan’s local
isometry theorem, that Lq(R(u, v)w) = R̃(Lq(u), Lq(v))Lq(w) for any u, v, w ∈ TqM . Then if two broken
geodesics γ1, γ2 beginning at p in M have the same endpoint, the corresponding broken geodesics in M̃

also have the same end point. Moreover, the resulting natural map Φ :M → M̃ is a locally isometry (and
hence covering map).

8. The Gauss-Bonnet-Chern theorem: If (M, g) is an orientable closed Riemannian manifold of dimension
m = 2k, then 1

2mπm/2(m/2)!

∫
M

Ω = χ(M).

9. Korn-Lichtenstein theorem on the existence of isothermal coordinates: On any 2-dimensional Riemannian
manifold (M, g), there exists coordinates x, y and smooth function u = u(x, y) so that g = e2u(dx⊗ dx+
dy ⊗ dy).

10. Ambrose-Singer holonomy theorem: As Lie subalgebra of the Lie algebra of endomorphisms of TpM , the
Lie algebra of the holonomy group with base point p is the subalgebra generated by the endomorphisms
of the form (P γ)−1 ◦R(P γu, P γv)◦P γ , where R is the curvature endomorphism, and γ is a curve starting
at p.

11. Curvature of left-invariant metrics on compact Lie group.

12. Riemannian geometry of CPm.

13. Riemannian geometry of the Grassmann manifold G(k, n).

14. Riemannian geometry of TM (with Sasaki metric).

15. Riemannian geometry of isoparametric hypersurface in space form.
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