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Problem Sheet 1

Lie Groups

Exercise 1.1. Let G be a Lie group. Show that the Lie bracket [X,Y ] of two left-invariant vector fields X,Y
is a left-invariant vector field.

Exercise 1.2. Consider the 3-dimensional sphere S3 as the set of unit quaternions, i.e.

S3 =
{
a+ ib+ jc+ kd ∈ H | a2 + b2 + c2 + d2 = 1

}
Show that S3 is a Lie group.

Exercise 1.3. Consider the Lie group SL(2,R) and its Lie algebra sl(2,R).

(1) Compute tr(expX) for X ∈ sl(2,R).

(2) Show that the exponential map exp: sl(2,R) → SL(2,R) is not surjective.

Exercise 1.4. Let G be a connected Lie group.

(1) Show that if H ⊂ G is an open subgroup then H = G.

(2) Let U ⊂ G an open neighbourhood of the identity e. Prove that the set W =
∞⋃

n=1
Un contains an open

subgroup of G. Deduce that W = G.

(3) Show that every group element g ∈ G is of the form g = expX1 · expX2 · · · · · expXn for finitely many
vectors X1, . . . , Xn in the Lie algebra g of G.

(4) Let ϕ, ψ : G→ K be Lie group homomorphisms. Show that if ϕ∗ = ψ∗ : g → h then ϕ = ψ.
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Problem Sheet 2

Fiber Bundles

Exercise 2.1. Suppose π : P → M is a principal G-bundle and let f : N → M be a smooth map. Define the
pullback of P under f to be the space

f∗P := {(x, p) ∈ N × P | f(x) = π(p)}

(1) Show that the map
π′ : f∗P → N

(x, p) 7→ x

defines a principal G-bundle.

(2) Let W ⊂ M be an embedded submanifold. Show that the restriction π : π−1(W ) → W is a well defined
principal G-bundle.

(3) Prove that the bundle f∗P is trivial if f is a constant map.

(4) Prove that the bundle f∗P is trivial if P is trivial.

Exercise 2.2. Define the Möbious strip M to be the submanifold

M =
{(
eiθ, reiθ/2

)
∈ S1 × C | θ ∈ [0, 2π], r ∈ [−1, 1]

}
and let π :M → S1 be the projection on the first factor.

(1) Show that π :M → S1 is a fibre bundle with fibre [−1, 1].

(2) Prove that the boundary ∂M is connected and that the bundle π :M → S1 is not trivial.

(3) Prove that the image of any smooth section s : S1 →M intersects the zero section eiθ 7→
(
eiθ, 0

)
.

Exercise 2.3. Let π :M → S1 be the fibre bundle from Exercise 2.2 and consider the maps

fn : S1 → S1

eiθ 7→ einθ

for n ∈ Z.

(1) Show that the pull-back bundle f∗nM is isomorphic to the bundle πn :Mn → S1 defined by

Mn =
{(
eiθ, reinθ/2

)
∈ S1 × C | θ ∈ [0, 2π], r ∈ [−1, 1]

}
where πn is the projection on the first factor.

(2) For which n ∈ Z is the pullback bundle f∗nM trivial?

Exercise 2.4.

(1) Let π : E → M be a fiber bundle such that the base M and the fibre F are connected. Show that E is
connected.

(2) Show that the SO(n) principal bundle π : SO(n+ 1) → Sn is the bundle of oriented orthonormal frames
of the tangent bundle TSn.

(3) Use part (1) to show that the group SO(n) is connected for all n.
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Problem Sheet 3

Principle Bundle

Exercise 3.1. Let π : P → B be a principal G-bundle, {Ui} an open cover of B by trivializing sets and
ωi1-forms on Ui with values in g. Show that if

ωj = Ad
(
ψ−1
ij

)
ωi + θij on Ui ∩ Uj

then there is a unique connection 1-form ω on P such that ωi = s∗iω.

Remark. Here θij , ψij and si are defined as in the lectures.

Exercise 3.2. Let π : P → B be a principal G-bundle and fix a connection H ⊂ TP . Consider vector fields
V,W ∈ X(B) and let Ṽ , W̃ be their horizontal lifts.

(1) Show that Ṽ +W = Ṽ + W̃ .

(2) Show that f̃V = (f ◦ π)Ṽ for f ∈ C∞(B).

(3) Show that [̃V,W ] = [Ṽ , W̃ ]H .

Exercise 3.3. Let G be a Lie group and g = TeG its Lie algebra. Consider a continuous curve Yt in TeG with
t ∈ [0, 1]. Show that there exist a unique curve at in G of class C1 such that a0 = e and ȧta

−1
t = Yt for all

t ∈ [0, 1].

Exercise 3.4. Consider S3 as the set of unit vectors in C2. By abuse of notation let π : S3 → S2 = CP1 be
the restriction of the projection π : C2\{0} → CP1 to S3.

(1) Show that π : S3 → S2 is a principal S1-bundle (called the Hopf bundle).

(2) Consider S1 as the unit circle in C with Lie algebra iR and exponential map exp(Y ) = eiy where Y =
iy ∈ iR. Define 1-forms on S3 with values in C by

αj (X0, X1) = Xj , ᾱj (X0, X1) = X̄j

by using the identification

T(z0,z1)S
3 =

{
(X0, X1) ∈ C2 | R (z̄0X0 + z̄1X1) = 0

}
where R(β) denotes the real part of β ∈ C. Show that the 1-form on S3

A(z0,z1) =
1

2
(z̄0α0 − z0ᾱ0 + z̄1α1 − z1ᾱ1)

has values in iR and is a connection 1-form for the Hopf bundle.
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Problem Sheet 4

Connection

Exercise 4.1. This is a continuation of Exercise 3.4 on sheet 3. We will use the same notation.

(1) Show that the curvature of the connection 1 -form A on the Hopf bundle is given by

ΩA = − (α0 ∧ ᾱ0 + α1 ∧ ᾱ1)

(2) Define a 2-form on C by
Ω̃w := − 1

(1 + |w|2)2
dw ∧ dw

Let U1 :=
{
[z0, z1] ∈ CP1 | z1 6= 0

}
and ψ1 : U1 → C be given by [z0 : z1] 7→ z0/z1. Show that ψ∗

1Ω̃ can be
prolonged to a form ΩCP1 on all of CP1 which satisfies π∗ΩCP1 = ΩA. Deduce that for every local section
s of π, defined on some open set V ⊂ CP1 one has s∗ΩA = ΩCP

∣∣∣∣
V

.

(3) Compute the integral
∫
CP1

ΩCP1 .

Exercise 4.2. Let G be a Lie group and H ⊂ G a closed subgroup, with Lie algebras h ⊂ g. We know that
π : G → G/H is an H-principal bundle. Assume that there exists a vectorspace complement m ⊕ h = g such
that Ad(H)m ⊂ m.

(1) Consider ω = πh ◦ θ ∈ Ω1(G, h), where θ is the tautological 1-form on G with values in g. Prove that ω is
a connection 1-form on G→ G/H.

(2) Show that the vertical and horizontal subspaces defined by ω at a point g ∈ G are given by DLgh and
DLgm.

(3) Prove that the curvature of the connection ω is given by

Ω = −1

2
πh ◦ [πm ◦ θ, πm ◦ θ] ∈ Ω2(G, h)

where the commutator is taken in g.

Exercise 4.3. Let P → B be a principal G-bundle. Assume P admits a reduction of the structure group to a
closed Lie subgroup K ⊂ G. Prove that P admits a connection with holonomy contained in K.
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Problem Sheet 5

Constructions in Gauge Theory

Exercise 5.1. Let G be a Lie group and Ad : G→ GL(g) its adjoint representation. Show that the differential
of Ad at the identity element is given by

De Ad : g → End(g)

X 7→ (Y 7→ [X,Y ])

Exercise 5.2. Let B̃ → B be the universal covering space of a smooth connected manifold B. Regard B̃ as a
principal bundle with fibre the discrete Lie group π1(B) acting on the right. Let G be a Lie group and consider
the bundle B̃ ×π1(B) G associated to B̃ by ρ : π1(B) → G with π1(B) acting on G by ρ composed with left
multiplication.

(1) Show that B̃ ×π1(B) G is a principal G-bundle over B which admits a flat connection.

(2) Show that for any representation ρ : π1(B) → GL(n,R) the associated vector bundle B̃ ×ρ Rn admits an
integrable connection, i.e. an integrable horizontal subbundle H ⊂ T (B̃ ×ρ Rn).

Exercise 5.3. Let π : E → B be a rank k vector bundle with fiber V over a smooth manifold B.

(1) Prove that the set of bases, or frames, in the fibres of E naturally forms a principal GL(V )-bundle over
B (the frame bundle Fr(E)).

(2) Show that the vector bundle Fr(E) ×ρ V associated to Fr(E) by the tautological representation ρ :
GL(k,R) → GL(V ) is isomorphic to E.

Exercise 5.4. Let π : P → B be a principal G-bundle.

(1) Consider two representations ρ, ρ′ : G→ GL(n,R). Show that the associated vector bundles P ×ρ Rn and
P×′

ρRn are isomorphic if and only if there exists a smooth map ϕ : P → GL(n,R) satisfying ρ′gϕpg = ϕpρg.

(2) Analogously prove that, for two smooth actions µ : G× F → F and µ′ : G× F → F , the associated fibre
bundles P ×G,µ F and P ×G,µ′ F are isomorphic if and only if there exists ϕ : P → Diff(F ) satisfying
µ′
gϕpg = ϕpµg.
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Problem Sheet 6

Associated Bundle

Exercise 6.1. Let π : P → B be a principal G-bundle and E = P ×ρ V an associated vector bundle. Fix a
connection ω on P and let ∇ be the induced connection on E. Using the definition of ∇ show that

∇X(fs) = f∇Xs+ (LXf) s

for any f ∈ C∞(B), s ∈ Γ(E) and X ∈ X(B).

Exercise 6.2. Let π : P → B be a principal G-bundle where the Lie group G is abelian. Denote by C∞(B,G)
the group of smooth maps from B to G with multiplication given by pointwise multiplication and by C∞(P,G)G

be the group
{
f : P → G | f(pg) = g−1f(p)g

}
. Show that the following map is a group isomorphism

C∞(B,G) → C∞(P,G)G

σ 7→ fσ = σ ◦ π

Exercise 6.3. Let π : P → B be a principal G-bundle and E = P ×G F be an associated fibre bundle. Recall
that a map f :M → B defines a pullback bundle f∗P →M , cf. Exercise 2.1.

(1) Show that the pullback principal G-bundle π∗P → P is trivial.

(2) Show that E is trivial if P is trivial.

(3) Show that the pullback bundle π∗E → P is always trivial.

Exercise 6.4. Let π : P → B be a principal G-bundle and ω ∈ Ω1(P, g) a connection 1-form on P . Suppose
that σ ∈ G is a bundle automorphism, i.e. a gauge transformation. Prove that σ∗ω is a connection 1-form on
P which satisfies

σ∗ω = Ad
(
f−1

)
ω + f∗θ

where f is the unique function such that σ(p) = pf(p) and θ is the tautological 1-form on G.
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Problem Sheet 7

Curvature and Connection 1-form

Exercise 7.1. Let E be a vector bundle with covariant derivative ∇. For two local trivializations differing by
a gauge tranformation g prove that the two curvature matrices are related by Ω′ = gΩg−1.

Exercise 7.2. Let E be a vector bundle with covariant derivative ∇ and F∇ its curvature. Prove that

F∇(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s

[Hint: You may use the special case proved during the lecture.]

Exercise 7.3. Let P → B be a principal G-bundle and φ : G → H a homomorphism between Lie groups.
Denote by Pφ the associated principal H-bundle. Show that for every connection 1-form ω ∈ Ω1(P, g) there
exists a unique connection 1-form ω′ ∈ Ω1 (Pφ, h) such that

f∗ω′ = φ∗ ◦ ω

where f : P → Pφ is defined by f(p) = [(p, e)].
[Hint: Use Exercise 3.1.]

Exercise 7.4. Let G and π : B̃ → B be as in Exercise 5.2. Denote by q : Pρ → B the principal G-bundle
associated to the universal covering by ρ : π1(B) → G. Define the map f : B̃ → Pρ by f(p) = [(p, e)] as in
Exercise 7.3.

(1) Use the previous exercise to show that there is a unique flat connection 1-form ωρ ∈ Ω1 (Pρ, g) such that
f∗ωρ = 0.

(2) Let qP : P → B be a principal G-bundle equipped with a connection 1-form ωP and f1, f2 : B̃ → P two
maps such that qP ◦ fi = π and f∗i ωP = 0. Show that there exists a unique g ∈ G such that f2 = f1g.

(3) Let qP : P → B be a principal G-bundle equipped with a connection 1-form ωP and f : B̃ → P a map
satisfying qP ◦ f = π and f∗ωP = 0. Show that there exists a homomorphism ρf : π1(B) → G with
f ◦ γ = fρf (γ)

−1 for all γ ∈ π1(B) such that the map

B̃ ×G −→ P

(p, g) 7→ f(p)g

induces an isomorphism ϕ : Pρf
→ P with ϕ∗ωP = ωρf

.

(4) Let ρ1, ρ2 : π1(B) → G be two homomorphism and define Pi = Pρi and ωi = ωρi as before. Prove that
there exists an isomorphism ϕ : P1 → P2 with ϕ∗ω2 = ω1 if and only if there exists g ∈ G such that
ρ2 = gρ1g

−1.
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Problem Sheet 8

Curvaure, Bianchi Identity and Princi-
ple Bundle Isomorphism

Exercise 8.1. Let P be a manifold and g a Lie algebra. Recall that for ω ∈ Ωk(P, g) and η ∈ Ωl(P, g) we
defined [ω, η] ∈ Ωk+l(P, g) by

[ω, η] (X1, . . . , Xl) :=
1

k!l!

∑
σ∈Sk+1

sgn
[
ω
(
Xσ(1), . . . , Xσ(k), η

(
Xσ(k+1), . . . , Xσ(n)

]
Prove the that this pairing has the following properties:

(1) [ω, η] = −(−1)kl[η, ω]

(2) [η, [η, η]] = 0

(3) d[ω, η] = [dω, η] + (−1)k[ω, dη]

Exercise 8.2. Let P be a principal G-bundle and g be the Lie algebra of G. If ω ∈ Ω1(P, g) is a connection
1-form with curvature Ω, prove the Bianchi-identity

dΩ = [Ω, ω]

Deduce from this the form of the Bianchi identity proved in the lectures:

dΩ

∣∣∣∣
kerω

≡ 0

Exercise 8.3. In the setting of the previous exercise, Ω corresponds to some F ∈ Ω2(B,Ad(P )), where Ad(P ) =
P ×Ad g. The form ω induces a covariant derivative ∇ on Γ(Ad(P )), which is extended to ∇ on Ωk(B,Ad(P )).
Prove

∇F = 0
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Problem Sheet 9

Euler Class on S2 and Curvature Inte-
grals

Exercise 9.1. Consider R3 with the standard scalar product 〈·, ·〉0 and compatible flat covariant derivative ∇0

on TR3.
For the unit sphere S2 ⊂ R3, we consider

TS2 ⊂ TR3

∣∣∣∣
S2

= TS2 ⊕ R

with the trivial summand spanned by the outward unit normal N to S2 ⊂ R3. On TS2 → S2, we define a
covariant derivative ∇ by

∇XY = pr
(
∇0

XY
)

where pr : TR3

∣∣∣∣
S2

→ TS2 is the projection with kernel spanned by N .

(1) Check that ∇ is compatible with the metric 〈·, ·〉 on TS2 given by the restriction of 〈·, ·〉0.

(2) Compute an explicit representative for e
(
TS2

)
∈ H2

dR

(
S2

)
from the curvature of ∇.

(3) Prove that
∫
S2

e
(
TS2

)
= 2.

[Hint: f : [0, 2π]× [0, π] → S2, (u, v) 7→ (cosu · sin v, sinu · sin v, cos v) gives a parametrization of S2. Normalize
∂f

∂u
,
∂f

∂v
to unit length and check that this gives an orthonormal frame for TS2. The calculation in (2) and (3)

is easy using this frame.]

Exercise 9.2. Let P → B be a principal SO(2)-bundle. Give a definition of an Euler class e(P ) ∈ H2(B,R)
which does not use the associated vector bundle, but instead a connection 1-form and local expression for the
curvature of this form. Prove that it is independent of the choices made. Then show that the class you defined
coincides with the Euler class of the associated vector bundle. Use this and Exercise 4.1 to compute

∫
CP1

e,
where e is the Euler class of the Hopf bundle.

Exercise 9.3. Show that the Euler class is functorial under pullbacks, i.e. given a smooth map f : N → M
and an oriented rank 2 bundle E over M , one has:

e (f∗E) = f∗e(E)

Exercise 9.4. Let B be a manifold and let E be an oriented vector bundle with a decomposition E = L⊕ R,
where L is a line bundle and R the trivial line bundle. Show that e(E) = 0. Deduce that for an arbitrary E
(still oriented, of rank two) the Euler class e(E) vanishes if there exists a nowhere vanishing section s : B → E.
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Problem Sheet 10

Hodge Star Operator and Yang-Mills The-
ory

Exercise 10.1. Let (M, g) be an n-dimensional oriented Riemannian manifold and ∗ the Hodge star operator.

(1) Prove that
∗∗ : Ωk(M) −→ Ωk(M)

is given by
∗∗ = (−1)k(n−k)

(2) Determine the even dimensions n = 2k where ∗∗ = 1 on Ωk(M). In these dimensions we can define
self-dual and anti-self-dual k-forms ω, satisfying ∗ω = ω and ∗ω = −ω, respectively.

Exercise 10.2. Let (M, g) be a closed (compact without boundary) n-dimensional oriented Riemannian man-
ifold. The Laplace operator on k-forms is defined by

∆ = dd∗ + d∗d : Ωk(M) → Ωk(M)

where d∗ is the formal adjoint of d. A form ω is called harmonic if ∆ω = 0. Prove that

ω is harmonic ⇐⇒ dω = 0 = d∗ω ⇐⇒ ∗ω is harmonic.

Exercise 10.3. Let (M, g) be a Riemannian 4-manifold with principal bundle P → M . Prove that the Yang-
Mills functional is invariant under conformal change of the metric, i.e. when replacing g by g′ with

g′ = e2λg

where λ ∈ C∞(M) is an arbitrary smooth function on M .

Exercise 10.4.

(1) Prove that the connection A on the Hopf bundle S3 → S2, introduced in Exercise 4.3, satisfies the
Yang-Mills equation if S2 has the standard round Riemannian metric.

(2) Prove that the Yang-Mills moduli space for the Hopf bundle S3 → S2 over the round sphere S2 consists
of a single point.
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Problem Sheet 11

Yang-Mills Theory

Exercise 11.1. Let ∇ be a covariant derivative on E → B and ∇ its extension on EndE defined by(
∇Xφ

)
s = ∇X(φ(s))− φ (∇Xs)

for all X ∈ TB, s ∈ Γ(E), φ ∈ Γ(EndE).

(1) Prove that ∇ is indeed a covariant derivative on EndE.

(2) Prove that
F∇(X,Y )φ =

[
F∇(X,Y ), φ

]
where the right-hand side is the commutator of endomorphism

[ψ,φ] = ψ ◦ φ− φ ◦ ψ

Exercise 11.2. Let P → B be a principal G-bundle.

(1) Prove that if P admits a reduction to S1 ⊂ G, then P admits a Yang-Mills connection for any Riemannian
metric on B.

(2) If B is 4-dimensional, is the same statement true for self-dual or anti-self-dual Yang-Mills connections?

Exercise 11.3. Let P → B be a principal G-bundle with gauge group G and space of connections C. Determine
all possible stabilizers Stab(ω) ⊂ G for the G-action on C in the cases G = SU(2) and G = SO(3).

Exercise 11.4. Consider the principal SU(2)-bundle S7 → S4 defined in an analogous way to the Hopf bundle
S3 → S2 when replacing the complex number with quaternions.

(1) In analogy with Exercise 4.3 define a connection 1-form A ∈ Ω1
(
S7, su(2)

)
.

(2) Prove that A satisfies the Yang-Mills equation for the standard round Riemannian metric on S4.
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Problem Sheet 12

4-manifolds

Exercise 12.1. Let V be an oriented 4-dimensional R-vector space with a scalar product.

(1) Given an oriented orthonormal basis α1, . . . , α4 ∈ V , write out explicit orthonormal bases for Λ2
+V and

Λ2
−V , derived from the αi.

(2) Given an arbitrary vector space W and an α 6= 0 ∈ V , show the linear map

π− ◦ α⊗ : V ⊗W → (Λ−V )⊗W

β ⊗ w 7→ (α ∧ β)− ⊗ w

has kernel consisting of elements of the form α⊗ w ∈ V ⊗W .

(3) Show that the map in (2) is surjective.

Remark. This completes the proof that the symbol sequence of the twisted half de Rham complex of an
oriented Riemannian 4-manifold is exact.

Exercise 12.2. Let Q : Zr × Zr → Z be a positive definite symmetric bilinear form. Assume Q is unimodular
in the sense that detQ = ±1. Let m be one half the number of solutions to the equation

Q(α, α) = 1

(1) Prove that m ⩽ r, with equality if, and only if, Q can be diagonalized over Z.

(2) Prove that the symmetric bilinear form corresponding to the quadratic form

QE8
(x1, . . . , x8) := 2

∑
i=1,...,8

x2i − 2
∑

i=1,...,6

xixi+1 − 2x5x8

is positive definite and unimodular, but not diagonalizable over Z.

Exercise 12.3. For a closed oriented 4-manifold X, denote by QX its intersection form.

(1) Compute QS2×S2 and QCP2 .

(2) Let P (x, y) := x2 − y2. Show that QS2×S2 is equivalent to P over the reals, but not over the integers.

Remark. One may see check P = QCP2#CP2 . So even though S2 × S2 and CP2#CP2 have the same Betti-
numbers, they are distinguished by their intersection form.
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