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Problem Sheet O

Preliminaries — Matrix Lie Groups and
Basic Examples

Exercise 0.1. Let A; be the standard differentiable structure on R, and A the one induced by the atlas
{(R, f(z) = 23)}. Show that:

(1) Show that .A; and Ay are not identical.
(2) Are (R, A;) and (R, A) diffeomorphic manifolds?

Exercise 0.2. Consider the curve ¢: R — R? . Examine whether ¢ and the restrictions ¢ (0,27) and

t — (sint, sin 2t)
c|(07ﬂ) are
(1) immersions,

(2) injective immersions,
(3) embeddings.

Exercise 0.3. Why is the embeddedness assumption in the following lemma.

Lemma. Consider the following commutative diagram of maps between manifolds, in which F' is any differen-
tiable map and G is an immersion.

M

Then:
(1) If G is an embedding, then H is continuous.
(2) If H is continuous, then H is differentiable.
[Hint: Think of the preceding question.]

Exercise 0.4. Let ¢ = (x1,...,2,) : U — R” be a chart of a differentiable manifold M. Show that

o 0
—,—| =0 for all 4, j.
{axi’ 0wj] orattJ
. 0 0 .
Exercise 0.5. Show that the vector field X defined by X, ) = b— —a— on R® is complete and
U0l 9y

determine the corresponding one-parameter group of diffeomorphisms.

Exercise 0.6. Which definitions of the tangent space T M of a smooth manifold M are you familiar with? Can
you show that for every p € M and v € T, M there exists a smooth curve ¢ : (—¢,e) = M, € > 0, with ¢(0) = p
and ¢/ (0) = v?
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The Exponential Map and One-Parameter
Subgroups

Exercise 1.1. Convince yourself that the symplectic group
Sp(2n,C) = {A € M(2n,C) | AJAT = J}
is indeed a closed matrix Lie group and show that its Lie algebra is given by
sp(2n) = {X € M(2n,C) | XJ = —JX T}

Exercise 1.2. Recall that the usual hermitian product on M(n,C) & C™ and the usual Euclidean product on
M(n,R) = R"" can be expressed by the formulas (X,Y) = tr(XY*) and (X,Y) = tr(XY™), respectively.

Show that with respect to their subspace topology as closed matrix Lie groups SO(n), O(n), SU(n) and
U(n) are compact, but SL(n,R) and SL(n,C) are not compact.

Exercise 1.3. Show that
(1) O(n) is not connected.
(2) SO(n), U(n) and SU(n) are connected.

Exercise 1.4. The Euclidean group E(n) is the group of all maps f : R™ — R™ with ||f(x) — f(y)]| = ||l — y||
for all z, y € R", where | - || is the standard Euclidean norm on R™. One can show that every f € E(n) with
f(0) =0 is a linear map. Show that:

(1) The map ¢ : R™ x O(n) — E(n) defined by
o(v, A)(x) = Az + v,
is bijective.
(2) The group E(n) is isomorphic to a closed matrix Lie group.

Exercise 1.5. Convince yourself that the exponential map restricts to a well-defined map exp : sl(2,R) —
SL(2,R). Show that:

inh A
(1) exp(X) = cosh A - Iy + % - X, for all X € sl(2,R), X # 0, where A = \/—det(X) is an eigenvalue of

sinh A
A

(2) exp:sl(2,R) — SL(2,R) is not surjective.

X (in case of A = 0 we define =1).

> are not contained in the image of exp.]

[Hint: Show that matrices of the form <_01 :El
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Lie Algebras and the Adjoint Represen-
tation

Exercise 2.1. Recall that the product M x N of two smooth manifolds M and N has a natural product smooth
structure. With respect to this smooth structure the projections 71 : M x N — M and o : M x N — N are
smooth maps. Moreover, they induce isomorphisms dmy x dmy : Ty o) (M x N) — T,M x TN = T,M © T,N
for all (p,q) € M x N.

Let G be a Lie group. Denote the group multiplication and the group inversion by p : G x G — G and
7: G — G, respectively.

1) Determine the differentials du . ) : TeG & T.G — T.G (under the above identification T, .\ (G x G) =
(ee) (e,e)
T.G®T.G) and dr. : T.G — T.G.

(2) For X, Y € T.G, let X, Y be the left-invariant vector fields on G with X, =X and f’e =Y, and let X,
Y be the right-invariant vector fields on G with X, = X and Y, =Y. Show that [X,Y]. = —[X,Y]..

(3) Convince yourself that also right-invariant vector fields on G with the Lie bracket form a Lie algebra.
Conclude that this Lie algebra is isomorphic to the Lie algebra of left-invariant vector fields on G with
the Lie bracket.

Exercise 2.2. Let G and H be Lie groups and ¢ : G — H a group homomorphism which is smooth in a
neighborhood of the neutral element e of G. Show that ¢ is smooth (and hence a Lie group homomorphism).

Exercise 2.3. Let H C G be an abstract subgroup of a Lie group GG. Show that its topological closure is a
closed subgroup of G (and hence an embedded Lie subgroup by theorems mentioned in the script). Show that
the closure is abelian if H is so.

Exercise 2.4. Let T2 = S'xS! be a 2-dimensional torus. Consider the Lie group homomorphism ¢ : R — T2

t (eQﬂ'it’ eQ?TiO(t)

)

where oo € R. Show that:
(1) ¢ is an immersion.
(2) If a € Q, then ¢ is periodic and G := ¢(R) is a one-dimensional compact Lie subgroup of T2.
(3) If « € R\ Q, then there holds:

(a) ¢ is injective.
(b) G is dense in T?.
(c) G is not closed in T2

Exercise 2.5. The skew-field of quaternions H is the set of matrices of type Z) with u, v € C, endowed

with the usual addition and multiplication of matrices. The fields R and C are embedded in H via C 5 u +—

(8 2) Set 1 = ((1) (1)>,i: ( 0.),j = ( 0 1), k= (? l). Then {1,i,j,k} is a basis of the R-vector

—i -1 0 0
space H, and one has

o

i2=j2=k>=-1,ij=—ji=k,jk=-kj=1ki=—ik =j.

3



CHAPTER 2. LIE ALGEBRAS AND THE ADJOINT REPRESENTATION 4

(1) Show that R is the center of H with respect to multiplication.

(2) Let h =a + bi + cj+ dk € H be a quaternion. Its real part and its conjugation are defined as Re(h) := a
and h := a — bi — ¢j — dk, respectively. Show that conjugation is an anti-automorphism, i.e. hk = kh
for all h, k € H. Show that we can define an inner product on H via (h,k) = Re(hk), which satisfies

(h, h) = det h.

(3) A quaternion h is called purely imaginary, if h = —h. The subspace of purely imaginary quaternions is in
a natural way identified with R3. Show that under this identification the cross product on R? corresponds
to the imaginary part of the quaternionic product.

(4) Show that the unit quaternions S® = {h € H | (h, h) = 1} form a Lie group. Identify it as SU(2).



Problem Sheet 3

Lie Subgroups, Homomorphisms, and the
Closed Subgroup Theorem

Exercise 3.1. Show that the connected component of a Lie group G that contains the identity is a normal
subgroup of G.

Exercise 3.2. Let G be a connected Lie group and let H be a Lie subgroup of finite index |G : H|. Show that
H=aG.

Exercise 3.3. The center of a Lie group G is the subgroup Z(G) := {g € G | gh = hg for all h € G}.
(1) Show that the center of SO(n) is {£1} if n > 2 is even and {1} if n is odd.
(2) Determine the center of U(n) and SU(n).

Exercise 3.4. Show that U(n) and S! x SU(n) are diffeomorphic, but not isomorphic as Lie groups.

Exercise 3.5. Let g be a 2-dimensional Lie algebra over R or C. Show that g is either abelian or there exists
a basis {X,Y} of g with [X,Y] = Y. Deduce that up to isomorphism there are only two 2-dimensional Lie
algebras.

Can you realize the non-abelian 2-dimensional Lie algebra over R as a Lie subalgebra of gl(2,R) = M (2,R)?
What is the corresponding connected Lie subgroup of GL(2,R)?
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Lie Group Actions, Orbits, and Stabiliz-
ers

Exercise 4.1. Let ¢ : G — H be a Lie group homomorphism between connected Lie groups which is also a
covering. Show that the kernel of ¢ is contained in the center of G. Conclude that the fundamental group of a
Lie group is abelian.

Exercise 4.2. Recall the statements of Exercise 2.5. Now consider the Lie group of unit-quaternions S =
{h € H | (h,h) = 1}. The adjoint representation Ad : S* — GL(3,R) of S* is given by h + Adj, where
Ady, : z € R® — hzh € R3, and R? is identified with the imaginary quaternions. Show that:

(1) Ad:S® — SO(3) is a Lie group homomorphism. Determine its kernel.

(2) Ad:S% — SO(3) is a covering map.
[Hint: By chapter 4 of script, one only needs to check that the differential at the identity is an isomorphism. |

Exercise 4.3. Consider the map
@: 8% x 8% = SO(4)
(9,h) = ©(g,h),

where ¢(g,h) : R* — R* is the linear map (g, h)(x) = gzh under the identification R* = H. Show that ¢ is
a well-defined Lie group homomorphism and a covering. What can you say about the possible Lie groups with
Lie algebra s0(4) up to isomorphism?

Exercise 4.4. Use the Gram-Schmidt process to show that SL(2,C) deformation retracts onto SU(2). See the
following for a related and more general version of this statement.

Theorem. Let G C GL(n,C) be a closed matrix Lie group which is defined as the common zero locus of some
set of real-valued polynomials in the real and imaginary parts of the matrix entries, and is closed under taking
the adjoint matrix. Let g C gl(n,C) be its Lie algebra, and K := GUU(n). Then the map

Kxp— Gk X) s keX
is a homeomorphism, where p is the subspace of hermitian matrices in g.

In particular, this shows that SL(2,C) is simply connected. Have a look at the following proposition.

Proposition. The universal cover G of SL(2,R) can not realized as a matrix group: there does not exist an
injective Lie group homomorphism ¢ : G — GL(n,R).

Which uses this fact to prove that there does not exist an injective Lie group homomorphism from the
universal covering Lie group of SL(2,R) to some GL(n,R). Convince yourself that the two homomorphisms
appearing in the proof have indeed the same differential.
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Representation Theory I — sly(C) and
Highest-Weight Vectors

Exercise 5.1. Let G be a Lie group. Show that there exists a neighborhood of the neutral element e in G,
which contains no subgroups except {e}.

Exercise 5.2. Determine all one-parameter groups ¢ : (R, +) — (R*,").

Exercise 5.3. Let G be a connected Lie group. Show that exp : g — G is a group homomorphism if and only
if G is abelian. (Here we consider g as a Lie group with respect to addition).

Exercise 5.4. Show that the exponential maps of T™, SO(n) and SU(n) are surjective.
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Representation Theory II — Finite Di-
mensional slo-Modules

Exercise 6.1. Let ¢ : G — H be a Lie group homomorphism. Show that ker ¢ is a closed Lie subgroup of G
with Lie algebra ker dp.

Exercise 6.2.

(1) Let G an abelian Lie group. Show that the inversion i : G — G is a Lie group homomorphism with

ar—a !

differential di : g — g . Conclude that g is abelian.
X—=-X

(2) Let G be a connected Lie group with abelian Lie algebra g. Use the adjoint representation to show that
G is abelian.

Exercise 6.3. Let g be a Lie algebra over a field K. A derivation of g is a K-linear map D : g — g such that
DIX,Y]|=[DX,Y]+[X,DY] for all X, Y € g. Show that

(1) The set Der(g) of all derivations of g is a subalgebra of End(g), where End(g) is endowed with the natural
Lie commutator bracket.

(2) ad: g — Der(g), where adx(Y) := [X,Y], is well-defined Lie algebra homomorphism.
X — adx

(3) Show that the image of ad in Der(g) is an ideal.

Exercise 6.4. Let G be a connected Lie group. Show that the center Z of G coincides with the kernel of the
adjoint representation of G. Moreover, show that its Lie algebra is given by {X € g | [X,Y] =0 forall Y €
g} = ker(ad).
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Cartan Subalgebras, Roots, and Root
Space Decomposition

Exercise 7.1. The group Aut(g) of Lie algebra automorphisms (i.e. linear isomorphisms A : g — g which
preserve that Lie bracket in the sense that A([X,Y]) = [A(X), A(Y)]) of a finite dimensional real Lie algebra
g is a closed subgroup of GL(g) and hence a Lie subgroup. Show that its Lie algebra is given by the algebra
Der(g) of derivations of g.

Exercise 7.2. Let g and h be Lie algebras over a field K and let 7 : h — Der(g) be a Lie algebra homomorphism.
Show that there exists a unique Lie algebra structure on the vector space g ® h such that g C g ® b is an ideal,
h C g® b is a Lie subalgebra, the restriction of the Lie bracket of g @ h to g and bh respectively coincides with
their initial Lie brackets, and such that [V, X] = n(Y)(X) for all X € g and Y € h. This Lie algebra is called
the semidirect sum of g and b, and is denoted as g ®, b.

Exercise 7.3. Let G and H be Lie groups and 7 : H — Aut(G) a Lie group homomorphism such that the map

HxG— G
(h,g) — 7(h)(9)

is smooth. Show that
(1) The semidirect product G x, H of G and H with respect to 7 is a Lie group.
(2) G and H are Lie subgroups of G x, H, and G is moreover a normal subgroup.

(3) The Lie algebra of G x, H is given by g @4, h. Here dr : h — Der(g) is the differential of the Lie group
homomorphism H — Aut(g) . Notice that, by Exercise 7.1, the Lie algebra of Aut(g) is Lie algebra of
h— d(r(h))
Aut(g) is given by Der(g).
Exercise 7.4. Let A = (Z Z) € GL(2,R). Consider the abelian Lie algebra R? with a fixed basis {X,Y},
and the Lie algebra R with a fixed basis {Z}. We define a Lie algebra homomophism 74 : R — Der(R?) by
TA(Z)(X) =aX 4+ cY and m4(Z)(Y) = bX + dY.

(1) Show that the semidirect product R? &, , R can be realized as a matrix Lie algebra, by identifying X with

0 01 0 0 O a b 0
0 0 0),Ywith [0 0 1]),and Zwith [c d O
0 0 0 0 0 0 0 0 0

(2) Show that R? &, , R is a solvable Lie algebra which is not which is not nilponent.

a 0

(3) Show that the Lie algebras R? @, , R with A = (0 1

), a > 1, are not isomorphic to each other.

Hence, there are uncountable many pairwise non isomorphic real solvable 3-dimensional Lie algebras.
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Semisimple Lie Algebras and the Killing
Form

Exercise 8.1. Let g be a semisimple Lie algebra. Show that the only ideals in g are the sums of some of its
simple ideals.

Exercise 8.2. Prove that the Killing form of a nilpotent Lie algebra is zero.

Exercise 8.3. Show that sl(n, C) is simple for all n > 1. To that end, define E;; € M(n,C) as the matrix with
all entries zero except a single entry 1 in the ith row and jth column, and check the following identity

(Eij, Exi] = 6y — 6uEyj,

is the Kronecker-§. For a nontrivial ideal j C sl(n, C) then proceed as follows:

where §;; = {h :‘]_
0i # j
(1) Show that there exists a matrix A = (a;;) € h such that ag; # 0 for some k # 1.
(2) Show that this implies Ej;, € b.
(3) Deduce that h = sl(n,C).
Exercise 8.4. Let g be a finite-dimensional complex Lie algebra.

(1) Look up the statement of Schur’s lemma.

(2) Use Schur’s lemma to show that if g is simple and semisimple, then every ad-invariant symmetric bilinear
form C on g is a scalar multiple of the Killing form. Here, a symmetric bilinear form C on g is called
ad-invariant, if C(adxY, Z) + C(Y,adx Z) = 0.

[Hint: Define A: g — g by B(A(X),Y) =C(X,Y).]
(3) Conclude that the Killing form B of sl(n,C), n > 2, satisfies
B(X,Y) = 2ntr(X,Y),

for all X, Y € sl(n,C).

10
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Compact Lie Groups and Maximal Tori

Exercise 9.1. Prove that a real Lie algebra with a positive-definite Killing form must be zero-dimensional.
Exercise 9.2. Explain why s(2,R) is not a compact Lie algebra.

Exercise 9.3. Let G be a connected Lie group with Lie algebra g. Show that an inner product { , ) on g is
Ad-invariant if and only if
(adxY, Z) + (Y;adx Z) =0

holds for all X, Y, Z € g (in which case we say it is ad-invariant).

Exercise 9.4. Let g be a complex Lie algebra. By restricting the scalars, we can view it as a real Lie algebra
g®. Show that g must be abelian, if g® is a compact Lie algebra.

11
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Covering Groups — SU(2) and SO(3)

Exercise 10.1. Let g be a complex Lie algebra. Show that g is semisimple (i.e. that its Killing form is
nondegenerate) if and only if its realification g® is semisimple.

Exercise 10.2. Let g be a real Lie algebra. Show that g is semisimple if and only if its complexification g€ is
semisimple. Show that g€ is simple, if g is a compact simple Lie algebra.

Exercise 10.3. Let p, ¢ > 1 be positive integers with n = p 4+ ¢g. One can show that

SU(p,q) ={Ae M(n,C) | A", ,A=1,,,det A =1},

where I, , = <_Ip 0 ), is a Lie group with Lie algebra

0o I,

o) = (X = (31 32) € MOLO) | K] = X1, = ~Xa,0x(X) =0).
2 3

(1) Show that the complexification of su(p, ¢) is isomorphic to
5l(n,C) ={X € M(n,C) | tr(X) = 0}.

(2) For which p and ¢ is su(p, ¢) a compact real forrm of sl(n,C)?
(3) Conclude that the Lie groups SU(2) (n > 2), SU(p,q) (p,q > 1) and SL(n,R) (n > 2) are simple.

Exercise 10.4. Let g C sl(n,C) be a Lie subalgebra that is simple and invariant under taking the Hermitian
conjugate, i.e. X* € g if X € g. Show that g has a compact real form.

12



Problem Sheet 11

Root Space Decomposition and Classi-
fication of 3D Compact Lie Groups

Exercise 11.1. Show that the diagonal matrices in SU(n) and U(n), respectively, form a maximal torus.
Conclude that the diagonal matrices in sl(n,C) form a Cartan subalgebra.

Exercise 11.2. Consider the Lie algebra sl(n,C) with the diagonal matrices as a Cartan subalgebra h. Let
E;; be the matrix with a 1 in the ¢, j-entry and zeros elsewhere. Let e; € h* be the linear functional defined
by e;(diag(ds,...,dn)) = d;. Recall the relation [Ey, E;;] = 01;Ex; — 0k Eq. Determine the roots and the root
space decomposition of sl(n, C) with respect to the Cartan subalgebra b.

Exercise 11.3. In this exercise we want to prove the uniqueness part in the following statement about repre-
sentations of sl(2,C): For each integer n > 1 there exists, up to isomorphism, a unique irreducible represention
7 : 5((2,C) — End(V) on a complex vector space of dimension n. It is uniquely determined by the property
that there exists a basis {vg,...,v,_1} of V such that

(1) w(h)(v;) = (n — 1 - 2i)o,
(2) 7(f)(v) = vies fori <n—1
(3) 7(f)(wnor) =

(4) m(e)(vo) =

(5) m(e)(v;) =i(n — 1)v;—q fori > 1.

Here are some hints: Start with any eigenvector v of 7(h) and through applications of 7(e) find an eigenvector
vp of 7(h) such that m(e)vg = 0. Set v; = w(f)*vo and show that there is a minimal k such that 7(f)**1vy = 0.
Prove that all desired conditions are satisfied and conclude that £k =n — 1.

Remark. To show the existence part one can just define a representation of s[(2, C) by the above properties and
check that all desired conditions are fulfilled. The resulting representations can for instance also be described
in terms of bivariate homogenous polynomials. See the following theorem:

Theorem. g, is irreducible and S = {¢}}22,.
Exercise 11.4. Use the root space decomposition to:
(1) Classify compact connected Lie groups of dimension 3.

(2) Prove that there exist no compact semisimple Lie groups in dimensions 4, 5 and 7.

13
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Haar Measure and Peter—Weyl Theorem

Exercise 12.1. Show that the Weyl group of sl(n,C) is isomorphic to the symmetric group S,,.
Exercise 12.2. Consider the Lie algebra so(2n,C), n > 2, and define
0 i~y
—ih;y 0
0 ihs
{H = —ihy 0 | hi € C} C s0(2n,C).

=
Il

0 ihy,
—ih, O

Let e; € b*, 1 < i < n, be the linear map that maps the matrix H to h;.

(1) Show that adgEs = a(H)E, for all H € h and o = +e; & e;, where the matrix E, is nontrivial at most
in the 4, j-blocks, where it is given by
0 Xa
ECK - <_Xg‘ 0 ) .

Here

(2) Show that
0o == {X €50(2n,C) | [H, X] = a(H)X,VH € b} = CE,,

for o = £e; £ e; and that
50(2n,C) = h & P ga.,

acA
where A := {£e; £ e; | 1 <i< j<n}. Conclude that § is a Cartan subalgebra of so0(2n,C) and that the
decomposition above is the root space decomposition of so(2n,C) with respect to b.

Exercise 12.3. Let a C s0(2n,C) be an ideal in s0(2n,C), a # 0, n > 3. Using the notation from the previous
exercise, show that
(1) aZhb.
(2) There is some a € A such that g, C a.
[Hint: Consider X € a, X ¢ h. Let oy € A be such that the component of X in g,, is nontrivial.

Successively apply Lie brackets such that a new X has no component in g, for any o # «ag.]

(3) g5 C a, for all B € AU{0}. Conclude that so(2n,C) is simple.

Exercise 12.4. Choose a set of simple roots for so(2n,C), n > 3, and use them to determine the Dynkin
diagram of so(2n, C).

[Hint: Recall that the Killing form of so(2n,C) needs to be proportional to tr(XY) by Exercise 8.4, since
s0(2n,C) is simple by Exercise 12.3, semisimple because we have a compact real form, and the trace is an
ad-invariant bilinear form.]

14
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