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Problem Sheet 1

Fundamentals

Exercise 1.1. Determine the radius of convergence of the following power series:

(1) 2 —.-z“

v=0
(3) i::l (7131%1 2
] (_1 v . Z2v
W
(5) io:v! zY
v=0

(6) Which well-known functions do the power series (1)-(5) represent?

Exercise 1.2. Consider the field K = R or K = C. Prove that the Euclidean norm

is a norm on the vector space K™, i.e. it satisfies
(1) |zl =0 z=0,z K",
@) IIA- 2| = Al ll2ll, A € K, z € K,
(3) Triangle inequality: ||z +y|| < ||z|| + ||yll, z, y € K"

Exercise 1.3. Consider the field K = R or K = C. Show that for matrices A, B € M (n x n,K) the operator
norm
|A]| := sup{||Az| : z € K" and ||z|| < 1}

is a norm on the vector space M (n x n,K), i.e. it satisfies
(1) [[Al =0 A=0,
2) [A-All= Al 1] A € K,
(3) Triangle inequality: ||[A + B|| < [| 4] + || B||

In addition show
) [[A- Bl < [[All-1IBl,
(5) ||1|| = 1 with the unit matrix 1 € M(n x n,K).

Exercise 1.4. Consider the matrix

3 4 3
A=|-1 0 —1| e M3x3,C).
1 2 3



CHAPTER 1. FUNDAMENTALS

(1) Determine the characteristic polynomial of A.
(2) Determine the eigenvalues and eigenspaces of A.

(3) Is A diagonalizable?
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Matrix Series and the Exponential Map

Exercise 2.1. The complex geometric series
oo
>
v=0

has radius of convergence R = 1. Hence the series

" A" € M(n xn,C)
v=0

is well-defined for any matrix A € M(n x n,C) with ||A| < 1.
Show: The matrix 1 — A € M(n x n,C) is invertible with

oo
(L—A)=> A"
v=0
[Hint: Imitate the proof of the analogous result for the complex geometric series.

Exercise 2.2. The complex logarithmic series

log(1+ 2) = f: =0
og z) = 2 ” z
has radius of convergence R = 1. Hence the series
o0 A,U
log(1+ A) :=Y (~=1)"*'-— € M(n x n,C)
v=1 v

is well-defined for any matrix A € M(nxn, C) with ||A|| < 1. Consider an open subset I C R and a differentiable
function
B:I— M(nxn,C)

with ||B(t) — 1|| < 1 and [B’(t), B(t)] =0 for all ¢t € I.

Show: For all ¢ € I the inverse B(t)~! exists and
d
o8 B(t)=B(t)"'-B'(t) = B'(t)- B(t)"..
[Hint: In order to compute B(t)~! apply Exercise 2.1 with A := 1 — B(t).]
Exercise 2.3. Consider the endomorphism f € End(C?) defined with respect to the canonical basis by the
matrix

A

1 2
<O 3) e M(2x2,C).
(1) Show that
10 .
Ag = (0 3> (semisimple)
and
0 2 .
A, = <O 0> (nilpotent)
are not the matrices of the Jordan decomposition of f.

(2) Compute the matrices of the Jordan decomposition of f.



CHAPTER 2. MATRIX SERIES AND THE EXPONENTIAL MAP

Exercise 2.4. Provide the group
2
GL(n,K) c K"

with the induced topology from the Euclidean space.

Show: Each open subgroup
H c GL(n,K)

is also closed.
[Hint: You may use that a subspace is closed if and only if its complement is open.]
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Jordan Decomposition and Basic Struc-
ture

Exercise 3.1. Determine a matrix A € gl(2,C) with
-1 b .
exp A = (0 _1>, be R
Exercise 3.2. Consider a finite-dimensional complex vector space V and an endomorphism f € EndV. Show:

(1) If f is diagonalizable then f is semisimple.

(2) If f is semisimple then f is diagonalizable.
[Hint: You may use the decomposition V = @ V*(f) and prove:
X

puin(T) = [[(T =) = V(§) C Va(f)]

A

(3) The sum of two semisimple, commuting endomorphisms of V' is semisimple.

Exercise 3.3. Consider a finite-dimensional K-vector space V. Show: The sum of two nilpotent, commuting
endomorphisms of V' is nilpotent.

Exercise 3.4. Show that the subgroup of invertible matrices with rational entries
GL(2,Q) c GL(2,C)

is not a matrix group.
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The Exponential Map and Lie Algebra
Structure

Exercise 4.1. For K € {R,C} and k € N* denote by
n(k,K) := {(ai;) € M(k x k,K) : a;; =0 for j < i}
the Lie algebra of strictly upper triangular matrices and by
UP(k,K):={1+ A€ GL(kK): Aecn(kK)}
the group of unipotent matrices. Show:

(1) The Lie algebra satisfies
up(k, K) = n(k, K)
(2) The exponential map
exp : up(k,K) — UP(k,K)
is surjective and injective.
Exercise 4.2. For the Lie algebra L := gl(n,C) consider the adjoint representation

ad : L — EndL,
X — adx,

with
adx : L — L,

(adx)(Y) == [X, Y],

For v € N define the v-th iteration
(adX)’” L — L,

(adx)” :=[X,...[X,[X,Y]]..]
with v-times the argument X.

(1) Show by induction

(ady)V(Y) = i <];]> XUV (—X)Nv

v=0
(2) Define
XL L,
ad _ e (adx)N(Y)
N=0
Show

(X)) (V) =eX . V.7,

Exercise 4.3. Consider a pair of two matrices X, Y € M(n x n,C) each of which commutes with the commu-

tator, i.e.
[X,[X,Y]]=[Y,[X,Y]]=0.

6



CHAPTER 4. THE EXPONENTIAL MAP AND LIE ALGEBRA STRUCTURE 7
(1) Show the equivalence

2
exptX -exptY = exp (tX +tY + 5 [X,Y])
0
2
exptX - exptY - exp (2 - [X, Y]) =exp(t(X +Y)).

(2) Show that the two differentiable functions of the real parameter ¢
R — GL(n,C)

defined respectively as
t2
exp(t(X +Y)) and exptX -exptY -exp (—2 - [1X, Y])

satisfy the same linear ordinary differential equation with respect to ¢ and the same initial condition for
t=0.

[Hint: You may apply the product rule and combine the three resulting summands by using the functional
equation of exp in the commutative case. Then in the first summand the term X-exptY can be transformed
by the formula from Exercise 4.2.]

(3) Prove the adapted functional equation
1
expX -expY = exp X+Y+§ X, Y]

Exercise 4.4. Assume K € {R,C} and denote by UP(3,K) C GL(3,K) the subgroup of unipotent matrices.

(1) Show: The exponential map
exp : n(3,K) = UP(3,K)

satisfies )
exp(X) - exp(Y) = exp (X +Y + 3 [X, Y]) .
(2) Define a group structure on n(3,K) such that
exp : n(3,K) = UP(3,K)

becomes an isomorphism of groups.

[Hint: You may apply the results of Exercise 4.1 and 4.3.]
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Representations of su(2) and sl(2, C)

Exercise 5.1. For a matrix group G with surjective exponential map
exp:g— G.
Show: Each g € G has for each n € N* a n-th root {/g € G, i.e. there exists
h € G with A" = g.

Exercise 5.2. For j = 1,2, 3 compute explicitly the value of the 1-parameter subgroup of SU(2) with infinites-
imal generator i-o; € su(2) with the Pauli matrix o;.

Exercise 5.3. Assume the following results:

o For each representation of su(2) on a finite dimensional complex vector space V
A:su(2) = gl(V)
exists a unique morphism of matrix groups
A:8U(2) - GL(V)

such that the following diagram commutes

o For each n € N exists a representation
pn 2 81(2,C) — gl(V,,)
with an (n + 1)-dimensional complex vector space
Vi, = spanc(eg, . .., €n)
and the sl(2, C)-action: For j =0,...,n

hej=(n—2j)-e;, xz.ej=n—j+1)-ej_1, yej =(j+1) ejq1;

Epntl i—mE€_1 = 0

()0 em (0 ) v (0 9) cone

Define the restriction to su(2) as

for the elements

An = Pnlsucz) 1 s5u(2) = gl(Vy),n € N.

Show the equivalence of the following two properties:



CHAPTER 5. REPRESENTATIONS OF su(2) AND sl(2,C) 9

e The parameter n € N is even.

e For the induced morphism of matrix groups
Ay 2 SU(2) = GL(V,)
with tangent map A, exists a morphism of matrix groups
A, : SO(3,R) — GL(V,,)

such that the following diagram——with @ the universal covering——commutes

SU2) —2— GL(V,)
/>I
SO(3,R) '

N

Note: The group morphisms A,, with odd n € N are named the spinor representations of SU(2).

Exercise 5.4. Consider a Lie algebra L and an ideal I C L. Assume: The Lie algebra L/I is nilpotent and for
all x € L the restricted endomorphism
(adz)|f: I =1

is nilpotent. Show: The Lie algebra L is nilpotent.
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Nilpotent Lie Algebras

Exercise 6.1. Consider the following diagram with two short exact sequences of morphisms of Lie algebras,
and assume the existence of a morphism
f : Ll — L3

which makes the diagram commutative:

Ly

0—— Lo f Ly —— 0

2N
N A
Ls
Show that f is an isomorphism of Lie algebras.
Exercise 6.2. Consider a Lie algebra L. Show:
(1) For two nilpotent ideals I, J C L also the sum I +Y C L is a nilpotent ideal.
(2) There exists a unique maximal nilpotent ideal in L (named the nilradical of L).

Exercise 6.3. Consider a nilpotent K-Lie algebra L # {0}. Show:

(1) There exists a K-vector space decomposition
L=I®dK-xg
with an ideal I C L and a non-zero element zg € L.

(2) The centralizer of I satisfies

and there exists a maximal exponent n € N with
Cr, ([) Cc C"L.
(3) There exists an outer derivation of L, i.e. a derivation

D:L—L

which does not have the form
D =ad u with u € L.

[Hint: You may use Cr(I)\ C" 1L # @]

Exercise 6.4. Determine explicitly an outer derivation of the Lie algebra in n(3, K).

10
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The Heisenberg Algebra and Bilinear Forms

Exercise 7.1. Determine the center Z(h(n)) of the Heisenberg algebra.

Exercise 7.2. For n € N consider the vector space of square matrices
M = M(n x n,K),

and the symmetric bilinear trace form

B:MxM—K,
B(A, B) :=tr(A- B)
For each subspace V' C M denote by
Vi :={AeM:B(Av)=0forallveV}
the orthogonal space of V. Show:
(1) The form 3 is non-degenerate, i.e. M+ = {0}.
(2) The canonical map to the dual space
jﬁ M — M*,
A B(Aa 7)5
is an isomorphism of K-vector spaces.
(3) For each vector subspace V' C M holds
Ja(VEH) =VY:={Ae M*: )y =0}

and jg induces an isomorphism
M/VE S v

Exercise 7.3. For n € N consider the group
AF(n,K) ={K" - K", v —» A-v+b: Ae GL(n,K),b e K"}
of affine automorphisms of K”.
(1) Show: The group AF(n,K) is isomorphic to a matrix group G C GL(n + 1,K). In the following identity
AF(n,K) and G.
(2) Compute the Lie algebra af(n,K) of Lie group AF(n,K).

(3) Show that af(n,K) is a semidirect product
I Ao M

with two K-Lie algebras I and M, and a suitable morphism of Lie algebras

0 : M — Der(I).

11



CHAPTER 7. THE HEISENBERG ALGEBRA AND BILINEAR FORMS 12

Exercise 7.4. Consider the Lie algebra s((2,K) and its standard basis (e;);=1,2,3 with

1 0 0 1 00
e :=h:= (0 1)762.—3?.— (O O),eg.—y.— (1 O>€5[(2,K).

(1) With respect to the standard basis compute the matrices from M (2 x 2,K) of the endomorphisms of
51(2,K)
ad h, ad =, ad y.
(2) Determine the Killing form of s[(2,K) with respect to the standard basis, i.e. determine the matrix

Q = (k(ei, e5))1<i,j<3-

(3) Determine the rank and the eigenvalues of Q.
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Review of Key Concepts and Definitions

Exercise 8.1. Which classes of Lie algebras do you know? Give the definition of each class.

Exercise 8.2. Is any nilpotent Lie algebra also solvable?
Exercise 8.3. What is the content of the Cartan criterion for solvability?

Exercise 8.4. What does Lie’s theorem state, why does one need the complex numbers as base field?

Exercise 8.5.

Exercise 8.6.

How is the Killing form defined? Give some applications of the Killing form.

A b
A:(O )\),)\GK.

Set

Determine the minimal polynomial py,in (') of A and its characteristic polynomial pehar (7). How do they relate?

Exercise 8.7.

Exercise 8.8.

Give the definition of the trace form of a representation?

B:(}) §>

Set

Why are the matrices

1 0 0 2
BS—(O 3) andBn—(O O)

not the summands of the Jordan decomposition of B?

Exercise 8.9. What is the content of the Cartan criterion for semisimpleness?

Exercise 8.10.
Exercise 8.11.
Exercise 8.12.
Exercise 8.13.
Exercise 8.14.
Exercise 8.15.
Exercise 8.16.
Exercise 8.17.
Exercise 8.18.
Exercise 8.19.
Exercise 8.20.
Exercise 8.21.

Exercise 8.22.

State the Jacobi identity.

State the definition of a representation of a Lie algebra.

For which class of Lie algebras is the adjoint representation faithful?

State the definition and some properties of the exponential map of matrices.

Give an example of an infinite matrix series. For which matrices does the series converge?
State the difference between the matrix product and the Lie bracket of Lie algebras.
What are derivations, how do they relate to the adjoint representation?

State the definition and name some properties of the Killing form.

How do pmin(T') and penar(T') relate for general square matrices?

What about surjectivity of the exponential map?

State the definition and some properties of the Heisenberg Lie algebra.

State the main theorem about nilpotent Lie algebras.

Define the semidirect product of two Lie algebras. How does it relate to the direct product?

13



CHAPTER 8.

Exercise 8.23

Exercise 8.24.

its property.

Exercise 8.25.
Exercise 8.26.
Exercise 8.27.
Exercise 8.28.
Exercise 8.29.
Exercise 8.30.
Exercise 8.31.
Exercise 8.32.
Exercise 8.33.
Exercise 8.34.
Exercise 8.35.
Exercise 8.36.

Exercise 8.37.

morphisms?

Exercise 8.38.
Exercise 8.39.
Exercise 8.40.
Exercise 8.41.

Exercise 8.42.

are not simply

REVIEW OF KEY CONCEPTS AND DEFINITIONS 14

. How does a semisimple Lie algebra split?

Give the definition of the orthogonal space of an ideal in a semisimple Lie algebra, and state

State the definition of the Lie algebra of a matrix group.

How is the adjoint representation defined?

State the main theorem about solvable Lie algebras.

Name some of the classical matrix groups and derive their Lie algebras.

State the definition of a 1-parameter group.

State the definition of a connected topological space.

Describe the universal covering projection of SO(3,R).

How does the dynamic Lie algebra of quantum mechanics relate to the Heisenberg algebra?
State the general form of nilpotent matrix Lie algebras?

State the definition of the fundamental group of a connected topological space.

State Weyl’s theorem on complete reducibility.

Describe the universal covering projection of the identity component of the Lorentz group.

How does respectively nilotency and solvability behave in short exact sequences of Lie algebra

Characterize semisimpleness of a Lie algebra by its radical.

When does a short exact sequence of Lie algebra morphisms split? What does splitting imply?
Name some applications of the Jordan decomposition in Lie algebra theory.

State some types of induced representations. Prove that they are representations.

Give some examples from classical matrix groups which are simply connected and others which
connected.
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Semisimple Lie Algebras and Their Struc-
ture

Exercise 9.1. For the Lie algebra
L:=sl(n,C), n €N,

Show: The subalgebra of diagonal matrices
o(n,C)NL

is a maximal toral subalgebra of L.

Exercise 9.2. Consider a simple complex Lie algebra L and two bilinear symmetric forms
B,y:LxL—C
which are non-degenerate and satisfy for x, y, z € L the “associativity”
B[, ), 2) = Ba, [y, 2, ¥((w, 9], 2) = (@, [y, 2))-
Show: There exists a scalar p € C* satisfying

B=n-
Exercise 9.3. For
L :=sl(2,C)
consider the Killing form x and the trace form
tr: LxL—C,

tr(z,y) :=tr(zoy).

Determine p € C* with
K= - tr

Exercise 9.4.

(1) For an Abelian Lie algebra I, show: Each endomorphism of the vector space I is a derivation of the Lie
algebra I, i.e.
gl(I) = Der(I).

(2) Consider a Lie algebra S and an Abelian Lie algebra I. Due to part (1) each representation
p:S—gl(l)
satisfies p(S) C Der(I). Therefore the semidirect product
L:=1Ix,8
is a well-defined Lie algebra, fitting into the exact sequence of Lie algebras

0T5H L5850

Denote by

s:S—1L
a section against w. Assume S semisimple, and the representation p : S — gl(I) non-zero and irreducible.
Show:

15



CHAPTER 9. SEMISIMPLE LIE ALGEBRAS AND THEIR STRUCTURE 16

(a) Derived algebra: L = [L, L].
(b) Center: Z(L) = {0}.

(c) No factorizing as direct product: There does not exist a pair (L1, Lo) of Lie algebras with L; semisim-
ple and Lo solvable, such that

L~ L1 X LQ.
In particular, L is not semisimple.

[Hint: (i) Counsider I C L, S C L and verify p(S)(I) = I. Conclude [I,S];, = I. Show [S,S], = S.
(ii) From (¢, s) € Z(L) conclude s = 0.]
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Representation Theory of sl(2, C)

We set L :=sl(2,C) for all problems on the present problem sheet.

Exercise 10.1. Consider two L-modules U and W. Show: If u € U is a weight vector of weight A\, and w € W
a weight vector of weight A\, then the tensor product

u@weU®cW
is a weight vector of weight A, + Ay, .
Exercise 10.2. Consider the injection of Lie algebras
j:L—sl(3,C),
. A 0

considered as a block matrix.

(1) Show: With respect to the representation

p: L — gl(sl(3,C)),
z— ad j(z),

the L-module s((3,C) is reducible.

(2) Why is the L-module s[(3,C) from part (1) completely reducible? Determine the isomorphism classes of
the irreducible L-modules from the splitting of s((3, C).

Exercise 10.3. Denote by V() the irreducible L-module with highest weight A.
Determine the irreducible components of the L-module

V(4) @c V(7).
Exercise 10.4. For arbitrary p, ¢ € Z, determine the weights of the L-module

V(p) ®c V(q)

and the dimension of their weight spaces.

17
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Root Systems of so(4,C) and sl(3,C)

Exercise 11.1.

(1) Show the isomorphy of complex Lie algebras
50(4,C) ~ s0(3,C) ®s0(3,C).
(2) Determine the root sets of s0(3,C) and of so(4, C), the root space decomposition of s0(4,C), and explicit
generators of each root space of so(4,C).

(3) Determine the rank and a base of the root systems of s0(3,C) and so(4, C).

[Hint: (i) Define a suitable injective map s0(3,C) @ s0(3,C) — so(4,C). (ii) Use suitable generators of
50(3,C).]

For the following Exercise 11.2 and 11.3, set L := sl(3,C).
Exercise 11.2.
(1) Choose a maximal total subalgebra T' C L and determine explicitly a vector space basis (h;)jer of T
(2) Determine the root set @ of L with respect to T and a base A of the root system R = (R?,®).

(3) Compute the root space decomposition of L: For each positive root o € &+ determine root vectors
Lo € LY, yo € L7

such that the subalgebra of L
La = Span([j<-ra7ya7 ha = [wa7yoz]>

is isomorphic to
s((2,C).

Exercise 11.3. Denote by @ the root set of L with respect to a maximal toral subalgebra T' C L, and by
V = spangp®
the real vector space spanned by the roots a € @.
(1) Determine the rank of the root system R := (V,®) of L.
(2) Determine the Cartan matrix of R.

Exercise 11.4. Compute the Weyl group of the root system of s0(4,C) and of the root system of sl(3,C).

18
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Review in Representation Theory

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

Exercise
systems?

Exercise
Exercise
Exercise
Exercise

Exercise

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.

12.10.
12.11.
12.12.
12.13.
12.14.
12.15.

12.16.
12.17.
12.18.
12.19.
12.20.

dimensions.

Exercise

12.21.

Name a maximal toral subalgebra of s[(2,C) and more general of sl(n, C).
What is a Cartan integer?

Describe the irreducible finite-dimensional s[(2, C)-modules.

Describe the structure of the Lie algebra s((2, C).

Which role plays the Lie algebra so0(3,C) in physics?

How to obtain all complex representations of the matrix group SO(3,R)?
What is a base of a root system? Why is the concept important?

What is a primitive element, and why is the concept important?

In which respect differ the Coxeter graph and the Dynkin diagram of a root system?

How do the Lie algebras su(n) and sl(n, C) relate to each other?

Is the base of a root system uniquely determined?

What are ladder operators?

Define the concept of a root system. Why are root systems important?

Define the Lie algebra of the angular momentum and its commutator relations.

Which conditions on two bases of a root system ensure that they define isomorphic root

How do the Lie algebras sl(2,C) and so(3, C) relate to each other?

How to obtain all representations of the matrix group SU(n)?

Write down the Cartan matrices of bases of s[(2,C) and so(4,C). Explain their form.
Which concept is the Weyl group of a root system, and why is the concept important?

Determine the weight spaces of an irreducible finite-dimensional (2, C)-module and their

Which Cartan integers are possible for the root system of a semisimple complex Lie algebra?

19
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