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Problem Sheet 1

Topology

1.1 Compactness
Exercise 1.1. Recall that a topological space X is called compact if every open covering of X has a finite
subcovering. A subset of a topological space is called compact if it is compact in the subspace topology. Let
X,Y be topological spaces. Prove

1. If X is compact and A ⊂ X is closed, then A is compact.

2. If f : X −→ Y is continuous and X compact, then f(X) ⊂ Y is compact.

3. If X is Hausdorff and A ⊂ X is compact, then A is closed.

1.2 Manifold has a countable basis with compact closures
Exercise 1.2. Let M be a topological manifold. Show that there exists a countable basis of the topology
consisting of open sets with compact closures (note that the definition of a manifold asks for a countable basis
without other conditions).

1.3 Metric Space is Hausdorff
Exercise 1.3. Show that any metric space is Hausdorff.

1.4 A Homeomorphism which is not A Diffeomorphism
Exercise 1.4. Give an example of a homeomorphism which is not a diffeomorphism.

1.5 Stereographic Projection
Exercise 1.5. The n-sphere Sn is defined as the subspace

Sn :=
{
(x1, . . . , xn+1) ∈ Rn+1 | x21 + . . .+ x2n = 1

}
Consider the north-pole N = (0, 0, . . . , 0, 1) ∈ Sn. The stereographic projection from N is the map φN :
Sn\{N} → Rn which takes a point p ∈ Sn\{N} to the intersection of the line through N and p with the
hyperplane Rn = Rn × {0} ⊂ Rn+1. There is a similar map φS for the south-pole S = (0, 0, . . . , 0,−1).

Write down coordinate expressions for φN and φS and use these to show Sn is a topological manifold.
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Problem Sheet 2

Differentiable Manifold

2.1 Mapping Tori
Exercise 2.1. Let F be a differentiable manifold and φ : F → F a diffeomorphism. Consider the topological
space F × R with the equivalence relation ∼ given by

(x, t) ∼ (y, s) ⇐⇒ (φn(x), t+ n) = (y, s) for some n ∈ Z

The quotient space M := (F ×R)/ ∼ is called the mapping torus of φ. Important examples of mapping tori are
the 2-torus T 2

(
F = S1, φ(x) = x

)
, the Klein bottle K2

(
F = S1, φ(x) = −x

)
and the twisted 2-sphere bundle

over the circle, S2×̃S1
(
F = S2, φ(x) = −x

)
.

Show that ∼ really is an equivalence relation. The quotient by φ is clearly Hausdorff and has a countable
basis of the topology. Show that M is a differentiable manifold by explicitly defining a differentiable structure
on M , induced from that of F and R.

2.2 Projective Space
Exercise 2.2. Let K denote R or C. Define an equivalence relation on Kn+1\{0} as follows:

x ∼ y ⇐⇒ x = λy for some λ ∈ K\{0}.

The (real or complex) projective n-space is defined to be the quotient space

Kn :=
(
Kn+1\{0}

)
/ ∼ .

The equivalence class of a point (x0, . . . , xn) is denoted by [x0 : · · · : xn].
(1) Show that KPn is a compact differentiable manifold of dimension n(K = R), resp. 2n(K = C). You can

use the sets Ui := {[x0 : · · · : xn] | xi 6= 0} for i = 0, . . . , n as domains of charts.

(2) Consider the projection map
π : Sn −→ Kn

(x0, . . . , xn) 7−→ [x0 : · · · : xn] .
Show that π is a smooth map whose derivative at every point is surjective. What is the preimage of a
point in KPn?

2.3 Diffeomorphism between the Complex Projective Line and S2

Exercise 2.3. Consider the case K = C, n = 1 from the Exercise 2.2. This is a differentiable manifold
CP1 = {[z0 : z1] | zi ∈ C}. Using the charts from the Exercise 2.2 and those for S2 from Exercise 1.5, construct
a diffeomorphism from CP1 to S2.

2.4 The General Linear Group as a Lie Group
Exercise 2.4. Let K again denote R or C. Write GLn(K) := {A ∈ Kn×n | det(A) 6= 0}. Show that GLn(K)
is a differentiable manifold and that multiplication an formation of inverses define smooth maps GLn(K) ×
GLn(K) → GLn(K), resp. GLn(K) → GLn(K).
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Problem Sheet 3

Tangent Spaces and Tangent Bundle

3.1 Constant Rank Theorem and Local Coordinate Representation
Exercise 3.1. Let f : M → N be a smooth map of smooth manifolds and assume there is a neighborhood of
p ∈ M on which Df is of constant rank k. Show that there exist charts (U,ϕ) around p a and (V, ψ) around
q := f(p) such that ψ ◦ f ◦ ϕ has the form

(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) .

3.2 Embedding of Submanifolds via Inclusion Maps
Exercise 3.2. Show that for any submanifold Z ⊆ M of a smooth manifold, the inclusion map i : Z ↪→ M is
an embedding.

3.3 Rank Analysis of the Height Function on Sn

Exercise 3.3. Cousider Sn :=
{
(x0, . . . , xn) ∈ Rn+1 |

∑
x2i = 1

}
and the “height” function

h : Sn −→ R
(x0, . . . , xn) 7−→ xn.

Compute Dh in terms of the stereographic coordinates from Exercise 1.5 and determine its rank at every point.

3.4 Regularity Criteria for Projective Algebraic Sets
Exercise 3.4. Consider a collection of homogeneous polynomials p1, . . . , pk ∈ R [T0, . . . , Tn]. Convince yourself
that the projective vanishing set

V (p1, . . . , pk) := {[z0 : · · · : zn] ∈ RPn | p1 (z0, . . . , zn) = · · · = pk (z0, . . . , zn) = 0} ⊆ RPn

is well defined and find a necessary criterion in terms of the partial derivatives of the pj for this set to be a
submanifold of RPn.

3



Problem Sheet 4

Vector Bundles

4.1 Local Constancy of Fiber Rank in Vector Bundles
Exercise 4.1. A smooth map f : E → F between two vector bundles πE : E →M,πF : F →M over a smooth
manifold M is called a bundle map if πE = πF ◦ f and for each x ∈M the restriction to the fibre fx : Ex → Fx

is linear.

(1) Show that there is an open subset of U ⊆M such that the fibre-wise rank of f
∣∣∣∣
U

is constant.

(2) Give an example where the rank is not constant on all of M .

4.2 Sard’s Theorem for Compact Manifolds of Lower Dimension
Exercise 4.2. Let f : M → N be a smooth map of smooth manifolds such that dimM < dimN and M is
compact. Show Sard’s theorem in this case, i.e. that the complement of the image of f is open and dense, using
the following intermediate steps:

(1) Show that the image of f is closed.

(2) Show that there is an open set U ⊆M such that the rank of Df is constant on U .

Then use the local form for maps of constant rank from last sheet to conclude.

4.3 Matrix Lie Groups as Embedded Submanifolds
Exercise 4.3. Show that SO(n), O(n), SLn(R) are submanifolds of GLn(R) and compute their dimensions.

4.4 Nonvanishing Vector Fields on Odd-Dimensional Spheres
Exercise 4.4. Using the description TSn =

{
(x, v) ∈ Sn × Rn+1 | 〈x, v〉 = 0

}
for the tangent bundle of the

sphere, show that there always exist a nowhere vanishing section of TSn when n is odd. (Hint: R2m ∼= Cm).

4



Problem Sheet 5

Vector Bundles and Dynamical Systems

5.1 Kernel, Image, and Quotient Subbundles
Exercise 5.1. A smooth map f : E → F between two vector bundles πE : E →M , πF : F →M over a smooth
manifold M is called a bundle homomorphism if πE = πF ◦ f and for each x ∈ M the restriction to the fibre
fx : Ex → Fx is linear.

(1) Prove that if the rank of fx is constant, ker f := {e ∈ E | f(e) = 0} and im f := {f(e) | e ∈ E} are
subbundles of E, resp. F .

(2) Let E ⊆ F be a subbundle. Show that one obtains a well-defined smooth vector bundle F/E which over
a point x ∈M has the fibre Fx/Ex, i.e. the quotient of the fibres over x.

5.2 Tangent Bundle Structure and Pullback Trivialization
Exercise 5.2.

(1) Let π : E → X be a vector bundle. Show that there is a bundle isomorphism TE = π∗(TX ⊕ E).

(2) Let π :M → S1 be the Möbius strip. Let f : S1 → S1 be defined by z 7→ z2, where S1 = {z ∈ C | ‖z‖ = 1}.
Show that f∗M is the trivial bundle.

5.3 Diverse Flow Regimes on the 2-Torus
Exercise 5.3. Construct distinct flows on the 2-torus M = S1 × S1 with the following properties:

(1) All of the flow lines are closed

(2) Some flowlines are closed and others are not

(3) None of the flowlines are closed

You may use the description of the torus as M ∼= R2/Z2.

5.4 Integrating Linear Vector Fields on the Plane
Exercise 5.4. Find a flow on R2 which has the following velocity vector field:

(1) V = x
∂

∂x
+ y

∂

∂y

(2) V = −y ∂
∂x

+ x
∂

∂y

5



Problem Sheet 6

Lie Brackets, Lie Algebras, and Lie Groups

6.1 Jacobi Identity and the Lie Bracket Structure
Exercise 6.1. Let M be a smooth manifold. Show that the Lie bracket satisfies the Jacobi identity, i.e. for
any three vector fields X,Y, Z on M , one has an equality

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

6.2 Coordinate Vector Fields and Lie Bracket Computations
Exercise 6.2. Let (U,ϕ) be a chart of an n-dimensional smooth manifold M . Let ei denote the coordinate
vector fields, which correspond to the derivations ∂

∂xi
, where xi : U → R are the coordinate functions of ϕ, i.e.

ϕ(p) = (x1(p), . . . , xn(p)).

(1) Show that e1, . . . , en form a basis at the tangent space TpU for every p ∈ U and that [ei, ej ] = 0.

(2) Let f, g :M → R be smooth functions. Show that

[fX, gY ] = f (LXg)Y − g (LY f)X + fg[X,Y ]

for all vector fields X,Y on M .

(3) Calculate as an example the Lie bracket of the vector fields X = x2ye1 + e2 and Y = xe1 − y2e2 on R2

with coordinates (x, y), i.e. e1 =
∂

∂x
and e2 =

∂

∂y
.

6.3 Diffeomorphisms, Push-Forwards, and Invariant Vector Fields
Exercise 6.3. Let M be a smooth manifold. For φ :M → N a diffeomorphism and X a vector field on M , we
define the push-forward of X via (φ∗X) (φ(p)) := (Dpφ) (X(p)).

(1) For X,Y vector fields on M , show that

φ∗[X,Y ] = [φsX,φ∗Y ]

(2) Deduce that for M a Lie group and X,Y left-invariant vector fields, also [X,Y ] is left-invariant, i.e. the
left-invariant vector fields form a Lie algebra.

6.4 Lie Algebras of Classical Matrix Groups
Exercise 6.4. Let G be a Lie group. Identify the Lie algebra of left-invariant vector fields with the tangent
space at the neutral element e ∈ G. Describe the Lie algebras of GLn(R), SLn(R), O(n) and SO(n).

6



Problem Sheet 7

Vector Fields, Bundles, and Integrabil-
ity

7.1 Flows, Diffeomorphisms, and Homogeneity of Manifolds
Exercise 7.1.

(1) Consider the balls of radius 1 and 2, B1(0) ⊆ B2(0) ⊆ Rn. For any y ∈ B1(0), construct a complete vector
field X on B2(0) for which the associated global flow Φt satisfies Φ1(0) = y.

(2) Use the previous item to show that for a connected, differentiable manifold M and any two given points
x, y ∈M , there is a diffeomorphism φ :M →M such that φ(x) = y.

7.2 Submersions and Integrable Distributions
Exercise 7.2. Let p :M → N be a submersion. Show that ker Dp ⊆ TM is an integrable subbundle.

7.3 Pullback Bundles and Tangent Splittings on Product Manifolds
Exercise 7.3. Let π : E →M be a vector bundle and f : N →M a smooth map. Let f∗E = {(p, v) ∈ N ×E |
f(p) = π(v)} be the pullback bundle.

(1) Given a cocycle for E, compute a cocycle for f∗E.

(2) Prove that on a product of two smooth manifolds M = X × Y with projection maps pX , pY to the
factors, there is an isomorphism p∗XTX ⊕ p∗Y TY ∼= TM , under which the two summands map to integrable
subbundles.

7.4 Non-Integrable Distributions and the Frobenius Theorem
Exercise 7.4. Consider a subbundle V ⊆ TR3 defined as follows: If x, y, z are the coordinates on R3, the fibre
Vp at any point is spanned by the values X1(p), X2(p) of the sections X1 =

∂

∂y
and X2 =

∂

∂x
+ y

∂

∂z
.

(1) Draw pictures of Vp for various points p ∈ R3.

(2) Show that V is not integrable.

7



Problem Sheet 8

Exterior Algebra, Bilinear Forms, and
Line Bundles

8.1 Determinants and Induced Maps on Exterior Powers
Exercise 8.1. Let V be a vector space of finite dimension n and f : V → V a linear map. Show that the
induced map λ(f) : Λn(V ) → Λn(V ) is multiplication by the determinant det(f).

8.2 Canonical Forms for Skew-Symmetric Bilinear Forms
Exercise 8.2. Let V be a vector space of finite dimension n and ω ∈ Λ2 (V ∗) ∼=

(
Λ2V

)∗ be a 2-form, i.e. an
skew-symmetric bilinear map V × V → R. Given a basis e1, . . . en of V , one can describe ω by a matrix with
entries ωij = ω (ei, ej).

(1) Let n = 2 and ω 6= 0. Show that there exists a basis e1, e2 of V such that the matrix of ω with respect to
this basis has the form (

0 1
−1 0

)
(2) For n arbitrary, show that there exists a basis e1, . . . en and a number k with 2k ⩽ n such that

ω =

k∑
i=1

α2i−1 ∧ α2i

where α1, . . . , αn denotes the dual basis of V ∗. (For the proof, you can consider the subspaces W ′ = {v ∈
V | ω(v, w) = 0, ∀w ∈W} for subspaces W ⊆ V .)

8.3 Decomposability of 2-Forms and the Wedge-Square Criterion
Exercise 8.3. Let V be a vector space of finite dimension n. A 2-form ω ∈ Λ2 (V ∗) is called decomposable
if there exist 1-forms α, β ∈ V ∗ = Λ1 (V ∗) such that ω = α ∧ β. Using the previous exercise, show that ω is
decomposable iff ω ∧ ω = 0. If n ⩾ 4, find a 2-form which is not decomposable.

8.4 Tensor Products and Line Bundle Group Structure
Exercise 8.4.

(1) Show that for any two finite-dimensional vector spaces V,W there is a canonical isomorphism V ∗ ⊗W ∼=
Hom(V,W ) where the right hand side denotes the linear maps from V to W .

(2) Let M be a manifold. A line bundle L → M is a rank 1 vector bundle over M . Prove that the set L
of isomorphism classes of line bundles over M is an abelian group with multiplication given by tensor
product.

8



Problem Sheet 9

Differential Forms, Orientations, and In-
tegrability

9.1 Orientations and Symplectic Structures on Vector Spaces
Exercise 9.1. Let V be a vector space of finite dimension n > 0. An orientation of V consists of an equivalence
class of ordered bases under basis changes by matrices with positive determinant.

(1) Show that V has precisely two orientations and that any orientation of V induces one on Λn (V ∗) and
vice versa.

(2) A 2-form ω ∈ Λ2 (V ∗) is called non-degenerate or symplectic if for each non-zero vector x ∈ V there exists
a y ∈ V such that ω(x, y) 6= 0. Prove that symplectic forms can exist only for n even.

(3) If n = 2k and ω ∈ Λ2 (V ∗), prove that ω is symplectic if and only if ωk 6= 0.

9.2 Orientability of the Tangent Bundle
Exercise 9.2. Let M be a differentiable manifold of dimension n. Prove that the tangent bundle TM , consid-
ered as a 2n-dimensional smooth manifold, is always orientable.

9.3 Lie Derivatives and Cartan’s Formula
Exercise 9.3. Let M be a smooth manifold, α, β differential forms and X a vector field on M .

(1) Prove the following formula:
LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ)

(2) Deduce the Cartan formula
LXα = diXα+ iXdα

e.g. by induction over the degree of α.

9.4 Integrability of Distributions and the Frobenius Criterion
Exercise 9.4. Let M be a smooth manifold and α ∈ Ω1(M) a nowhere vanishing 1-form. Define a vector
bundle E = kerα ⊆ TM with fibres spanned by the values of vector fields in the kernel of α. Show that E is
integrable if and only if α ∧ dα = 0.

9
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Integration, Orientability, and Topolog-
ical Applications

10.1 Orientability and Non-Orientable Manifolds
Exercise 10.1. For an oriented manifold M , a smooth map f : M → M is called orientation preserving if
dfx : TxM → Tf(x)M is orientation preserving for all x ∈M .

(1) Let f : S2 → S2, x 7→ −x be the antipodal map. Show that f is not orientation-preserving on S2.

(2) Prove that RP2 is not orientable.

10.2 Stokes’ Theorem and the Brouwer Fixed-Point Theorem
Exercise 10.2.

(1) Let M be a compact oriented differentiable manifold with boundary ∂M 6= 0. Use Stokes’ Theorem to

show that there is no retraction of M onto ∂M , i.e. no smooth map r :M → ∂M s.t. r
∣∣∣∣
∂M

= Id∂M .

(2) Deduce the Brouwer fixed point theorem: Every smooth map f : Bn → Bn, where Bn := {x ∈ Rn | ‖x‖ <
1} is the open unit ball, has a fixed point.

10.3 Homotopy Invariance of Integrals of Closed Forms
Exercise 10.3. Let M , N , be differentiable manifolds without boundary of dimensions m, n. Two smooth
maps f, g :M → N are called homotopic if there exists a smooth map H :M×[0, 1] → N such that H(−, 0) = f
and H(−, 1) = g. Suppose M is closed and orientable, ω ∈ Ωm(N) a closed m-form on N and f, g homotopic.
Show that ∫

M

f∗ω =

∫
M

g∗ω

10.4 Exact 1-Forms and Integration over Loops
Exercise 10.4. Let M be a connected differentiable manifold and α ∈ Ω1(M) a 1-form. For a smooth map
φ : S1 →M define ∫

ϕ

α :=

∫
S1

φ∗α

Show that α is exact if and only if
∫
ϕ

α = 0 for all φ : S1 →M .

10



Problem Sheet 11

Vector Bundles, Connections, and Topo-
logical Invariants

11.1 Homotopy Invariance and de Rham Cohomology
Exercise 11.1.

(1) Let M be a compact oriented differentiable manifold without boundary and p ∈ M a point. Show that
the constant map f :M → {p} ⊆M is not homotopic to the identity map M →M .

(2) Let φn : S1 → S1, z 7→ zn, where S1 = {z ∈ C | ‖z‖ = 1} and let [ω] ∈ H1
dR

(
S1

)
be the class of a volume

form on S1. Show that φ∗n[ω] = n · [ω] and deduce that the maps φn are pairwise non-homotopic.

11.2 Flat Connections and Their Existence
Exercise 11.2. A connection on a vector bundle is called flat if it has vanishing curvature.

(1) Show that every trivial vector bundle over a differentiable manifold admits a flat connection.

(2) Find a vector bundle over T 2 = S1 × S1 which is non-trivial but admits a flat connection.

11.3 Connections Induced by Embeddings

Exercise 11.3. Let M ⊆ Rn be a submanifold. Via this inclusion, we consider TM as a subbundle of TRn

∣∣∣∣
M

.

Consider the splitting TRn

∣∣∣∣
M

= TM ⊕ TM⊥, where TM⊥ denotes the orthogonal complement with respect to

the standard scalar product on Rn. Use this splitting and a flat connection as in the previous exercise to define
a connection on TM .

11.4 Induced Connections on Associated Bundles
Exercise 11.4. Let E →M and F →M be two vector bundles with connections ∇E and ∇F . Find definitions
for induced connections on the dual bundle E∗, the tensor product bundle E⊗F and the homomorphism bundle
Hom(E,F ). Verify that your definitions indeed define connections.

11



Problem Sheet 12

Vector Bundle Connections: Curvature
and Parallel Section

12.1  Curvature Transformation Under Frame Changes

Exercise 12.1. Let E → M be a rank k vector bundle with connection ∇ and {si}ki=1, {s′i}
k
i=1 local frames

over an open set U . Define the matrix g by s′ = g · s, i.e. s′i(p) =
k∑

j=1

gij(p)sj(p) in every p ∈ U . Show that the

matrices of curvature 2-forms are related by Ω′ = g · Ω · g−1, i.e.

Ω′
ij =

k∑
l,m=1

gil · Ωlm ·
(
g−1

)
mj
.

12.2 Curvature in Induced Connections
Exercise 12.2. Let V →M and W →M be two vector bundles with connections ∇V and ∇W with curvatures
F∇V and F∇W . Express the curvature of the induced connections (as in Exercise 11.4) on the dual bundle V ∗,
the tensor product bundle V ⊗W and the homomorphism bundle Hom(V,W ) in terms of F∇V and F∇W .

12.3  Curvature via Covariant Derivatives
Exercise 12.3. Let E → M be a vector bundle with connection ∇ with curvature F∇ ∈ Ω2(EndE). Show
that

F∇(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s,

for all vector fields X,Y on M and all sections s of E.
(Hint: Show that both sides of the equation are C∞(M)-linear in X,Y, s.)

12.4  Parallel Sections and Their Properties
Exercise 12.4. Let M be a connected differentiable manifold and E →M a vector bundle with connection ∇.

(1) Show that a parallel section has a zero if and only if it vanishes identically.

(2) Show that the set of parallel sections forms a finite-dimensional vector space.

12



Problem Sheet 13

Connections on Vector Bundles: Equiv-
alence and Curvature

13.1 Integrable Subbundles and Torsion-Free Connections
Exercise 13.1. Let M be a smooth manifold and U ⊆ TM a subbundle. Given a connection ∇ on TM , we
say U is parallel (with respect to ∇ ) if ∇XY ∈ Γ(U) for all X ∈ X(M) and Y ∈ Γ(U). Prove that there exists
a torsion free connection on TM such that U is parallel if and only if U is integrable.
(Hint: You may use that TM always admits a torsion-free connection. This has been proved in the script.)

13.2 Non-Commutativity of Connections
Exercise 13.2. Show that no connection on a positive-dimensional manifold M can satisfy ∇XY = ∇YX for
all X,Y ∈ X(M).

13.3 Covariant Derivative and Parallel Transport
Exercise 13.3. Let M be a smooth manifold and E → M a vector bundle with connection ∇. Let s ∈ Γ(E),
X ∈ X(M) and p ∈M a point. Suppose c : I →M is an integral curve of X with c(0) = p. Prove that

(∇Xs) (p) =
d

dt
(P−1

t

(
sc(t)

) ∣∣∣∣
t=0

.

where Pt : Ep → Ec(t) is the parallel transport along c from 0 to t.

13.4 Gauge Equivalence and de Rham Cohomology
Exercise 13.4. Let M be a smooth manifold and E = M × R → M the trivial rank 1 vector bundle.
Two connections ∇, ∇′ are called gauge-equivalent if there exists a smooth map g : M → R∗ such that
∇′s = g−1 · ∇(g · s) for all sections s of E. Let ∇ be a flat connection. Then, in the given trivialization of E,
the connection 1-form α := ∇− d ∈ Ω1(End(E)) = Ω1(M) is closed. Conversely, every closed 1-form α on M
determines a flat connection via ∇α := d+ α. Show that

∇α,∇α′
are gauge-equivalent ⇔ [α] = [α′] ∈ H1

dR(M).
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Problem Sheet 14

Riemannian Vector Bundles and Curva-
ture

14.1 Symmetric and Skew-Symmetric Endomorphism Decomposi-
tion

Exercise 14.1. Let (V, 〈 , 〉) be a finite-dimensional vector space with scalar product. For φ ∈ End(V ) define
its adjoint φ∗ via 〈φ∗v, v′〉 = 〈v, φv′〉 for all v, v′ ∈ V . The endomorphism φ is called symmetric if φ∗ = φ and
skew-symmetric if φ∗ = −φ.

(1) Prove that (φ∗)
∗
= φ and that there is a direct sum decomposition End(V ) = V+ ⊕ V−, where V+, resp.

V−denote the vector spaces of symmetric, resp. skew-symmetric endomorphisms.

(2) Let E → B be a vector bundle with a metric 〈 , 〉. Do the same construction as above fibrewise for the
fibres of End(E) to deduce that there are vector bundles E+, E− with End(E) = E+ ⊕ E− and that the
sections of E− are the skew-symmetric endomorphisms of E as defined in the script.

14.2 Skew-Symmetric Endomorphisms and Exterior Algebra
Exercise 14.2. Let E → B be a vector bundle with a metric 〈 , 〉. We use the same notation as above. Show
that E− ∼= Λ2E and conclude that if E is oriented and of rank 2, then E−is the trivial bundle.

14.3 Uniqueness of the Riemann Curvature Tensor
Exercise 14.3. Let (V, 〈 , 〉) be a vector space with a scalar product. Let R,R′ : V × V × V → V be two
trilinear functions satisfying the symmetries of the Riemann curvature tensor. Assume that for all X,Y, Z ∈ V
one has 〈R(X,Y )Y, Z〉 = 〈R′(X,Y )Y, Z〉. Show that R = R′.

14.4 Product Metrics and Curvature Properties
Exercise 14.4. Let (M, 〈 , 〉M ) and (N, 〈 , 〉N ) be Riemannian manifolds. Consider the product metric on
M×N , defined in every tangent space T(a,b)M×N = TaM⊕TbM via 〈XM+XN , YM+YN 〉M×N = 〈XM , YM 〉M+
〈XN , YN 〉N .

(1) Express the Levi-Civita connection of the product metric on M×N in terms of the Levi-Civita connections
of the factors.

(2) Show that the sectional curvature is zero on any plane in T(a,b)(M ×N) which is spanned by one vector
in TaM and one in TbN .
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