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Preface

This script is mainly based on Prof. Dr. Dieter Kotschick’s course on Differential
Geometry for Ludwig-Maximilians-Universität in Munich in winter semester
2023-2024.

Motivation and Scope
Differentiable manifolds provide a unified framework for studying spaces that lo-
cally resemble Euclidean space but may exhibit complex global behavior. From
the curvature of spacetime in general relativity to the configuration spaces of me-
chanical systems, manifolds lie at the heart of many physical and mathematical
phenomena. This text focuses on developing the core concepts of smooth mani-
folds, tangent spaces, vector bundles, and differential forms—tools essential for
advanced topics such as Lie theory, Riemannian geometry, and cohomology.

While the material is rooted in pure mathematics, the techniques presented
here have profound applications in theoretical physics, including gauge theory,
symplectic mechanics, and string theory. Our goal is not merely to enumer-
ate definitions and theorems but to cultivate an intuitive grasp of the subject
through carefully chosen examples, historical context, and connections to adja-
cent fields.

Structure and Pedagogy
The book is organized into 14 chapters, progressing from foundational material
to advanced topics. Key pedagogical features include:

• Gradual Complexity:

– Chapters 1–2 introduce topological and differentiable manifolds, em-
phasizing local coordinates, atlases, and the “smooth invariance of
domain.”

– Chapters 3–6 explore tangent spaces, vector bundles, and their geo-
metric operations (e.g., pullbacks, metrics, and subbundles).

– Chapters 7–9 delve into dynamical systems (flows), Lie theory, and
the Frobenius theorem.

– Chapters 10–14 culminate in differential forms, integration, de Rham
cohomology, and connections.

• Examples and Theorems:
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– Classical examples (e.g., spheres, tori, projective spaces) recur through-
out the text.

– Major theorems—such as Whitney’s Embedding Theorem, Sard’s
Theorem, and Stokes’ Theorem—are presented with detailed proofs.

• Visual and Algebraic Balance:

– Geometric intuition is prioritized through diagrams while maintain-
ing algebraic rigor.

– Exercises interspersed within chapters encourage active learning.

Prerequisites and Approach
Readers should be familiar with:

• Basic topology (open/closed sets, compactness, Hausdorff spaces),

• Linear algebra (vector spaces, dual spaces, multilinear maps),

• Calculus on Euclidean spaces (partial derivatives, inverse function theo-
rem).

Abstract definitions (e.g., vector bundles, differential forms) are motivated
by their classical analogs in Rn. For instance:

• Tangent spaces generalize directional derivatives,

• Vector bundles formalize parameterized vector spaces,

• Differential forms unify integration and differentiation.

Philosophy and Innovations
Three principles guide this work:

• Accessibility: Technical machinery (e.g., partitions of unity) is intro-
duced only when necessary.

• Interconnectedness: Concepts reappear in new contexts (e.g., the tan-
gent bundle underpins flows and Lie derivatives).

• Modern Relevance: Applications are hinted at throughout (e.g., the
Frobenius theorem foreshadows foliations).

Acknowledgments
This manuscript owes its existence to countless conversations with colleagues,
students, and mentors. Special thanks to the vibrant mathematical commu-
nity for their insights and encouragement. Feedback from readers is warmly
welcomed.
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To the Reader
“The questions are the breath of research,”

——Hermann Weyl

Differential geometry is a journey—one that begins with coordinates and
curves and leads to the frontiers of modern physics. While the path is challeng-
ing, the rewards are profound. Approach each chapter with patience, revisit
examples often, and let curiosity guide you.

Xumin Liang
March 31, 2025
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Chapter 1

Topology

1.1 Topological Space
Definition 1.1. A topological space (X,O) is a set together with open sets
O ⊂ P(X), s.t.

(1) ∅, X ∈ O;

(2) U1, U2 ∈ O ⇒ U1 ∩ U2 ∈ O;

(3) Ui ∈ O, i ∈ I ⇒
⋃
i∈I

Ui ∈ O.

Example 1.1.

(1) O = {∅, X} the trivial topology on X.

(2) O = P(X) the discrete topology.

(3) the metric topology on a metric space.

1.2 Metric Spaces
Definition 1.2. A metric space (X, d) is a set X together with

d : X ×X → R(x, y) 7→ d(x, y)

s.t.

(1) d(x, y) ⩾ 0 with “=” if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ⩽ d(x, y) + d(y, z), ∀x, y, z ∈ X.

In the metric topology, a subset U ⊂ X is open if ∀x ∈ U , ∃ε > 0, s.t.

B(x, ε) := {y ∈ X | d(x, y) < ε} ⊂ U.

Terminology. Let (X,O) be a topological space.

1



CHAPTER 1. TOPOLOGY 2

(1) V ⊂ X is closed if X \ V ∈ O.

(2) x ∈ X, W ⊂ X is a neighborhood of x in (X,O), if x ∈ W and W
contains an open set U , s.t. x ∈ U ⊂W .

(3) Ui ∈ O, i ∈ I, the Ui form an open cover of X if
⋃
i∈I Ui = X.

Definition 1.3. A topological space (X,O) is Hausdorff if ∀x1, x2 ∈ X, x1 6=
x2, ∃U1, U2 ∈ O, s.t. xi ∈ Ui and U1 ∩ U2 = ∅.

Example 1.2. The metric topology of a metric space is always Hausdorff.

Proof. Let x, y ∈ X and x 6= y. Then d(x, y) > 0. Take ε :=
d(x, y)

2
, then

B(x, ε) ∩B(y, ε) = ∅ and x ∈ B(x, ε), y ∈ B(y, ε).

1.3 Basis of Topology
Definition 1.4. A basis of the topology O is a B ⊂ P(X), s.t. every U ∈ O
is a union of subsets in B.

Lemma 1.1. Consider Rn with the metric topology induced by Euclidean dis-
tance function

d(x, y) =

(
n∑
i=1

(xi − yi)
2

) 1
2

There is a countable basis B ⊂ P(Rn).

Proof. Take B
(
x,

1

k

)
, where x ∈ Qn, k ∈ N. B consists of all these balls as x

ranges over Qn and k ranges over N.
U ⊂ Rn open. Take x ∈ U . Then ∃ε > 0, s.t. B(x, ε) ⊂ U . Take

y ∈ B

(
x,

1

3
ε

)
∩Qn.

Consider x ∈ B

(
y,

2

3
ε

)
⊂ U .

d(x, y) <
1

3
ε

Fix r ∈ Q with 1

3
ε < r <

2

3
ε. Then B(y, r) ∈ B and B(y, r) ⊂ U .

1.4 Topological Manifold
Definition 1.5. A topological manifold M of dimension n ∈ N is a topolog-
ical space (M,O), s.t.

(1) (M,O) is locally homeomorphic to Rn (“locally Euclidean”);

(2) (M,O) is Hausdorff;

(3) (M,O) has a countable basis for O.
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Let (X,OX) and (Y,OY ) be topological spaces.

Definition 1.6. A map f : X → Y is continuous if f−1(U) ∈ OX for all
U ∈ OY .

Definition 1.7. f is homeomorphism if f is bijective and continuous, and
f−1 is also continuous.

Definition 1.8. (X,OX) and (Y,OY ) are locally homeomorphic if every x ∈ X
has an open neighborhood U which is homeomorphic to an open set in Y .

Example 1.3.

(1) M = Rn.

(2) M is a manifold ⇒ any open U ⊂M is also a manifold.

(3) M is a manifold of dimension m and N is a manifold of dimension n ⇒
M ×N is a manifold of dimension m+ n.

(4) Sn := {x ∈ Rn+1 | ||x|| = 1}. This is a n-dimensional manifold.

(5) Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

by (3) and (4).

(6) Every surface is a 2-dimensional manifold.



Chapter 2

Differentiable Manifold

2.1 Charts
Locally Euclidean: ∀x ∈ X, ∃U open and a homeomorphism ϕ : U → V ⊂ Rn.

Define (U1, ϕ1) and (U2, ϕ2) as above. Then

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)

homeomorphism−−−−−−−−−−→ ϕ2(U1 ∩ U2).

The (Ui, ϕi) are called charts and f21 = ϕ2 ◦ ϕ−1
1 is the transition map from

the chart (U1, ϕ1) to the chart (U2, ϕ2).

2.2 Atlas
Definition 2.1. A collection of charts (Ui, ϕi), i ∈ I with

⋃
i∈I

Ui =M is called

an atlas. We have the cocycle conditions/properties

(1) fii = Id

(2) fij = f−1
ji

(3) fijfjk = fik

∀i, j, k ∈ I

The fij for pairs i, j ∈ I with Ui ∩ Uj 6= ∅ form the structure cocycle of the
given atlas

A = {(Ui, ϕi) | i ∈ I}.

Proposition 2.1. Let A be an atlas forM . From the collection of open subsets
Vi = ϕi(Ui) ⊂ Rn together with the structure cocycle, one can reconstruct M .

Proof. M =

(∐
i∈I

Vi

)
/ ∼, where ∼ is the equivalence relation given by Vi 3

p ∼ q = fji(p) ∈ Vj , ∀i, j ∈ I.

a :M →M

[p] 7→ ϕ−1
i (p) if p ∈ Vi

4



CHAPTER 2. DIFFERENTIABLE MANIFOLD 5

If q ∈ Vj is equivalent to p, then q = fji(p) ⇒ ϕ−1
j (q) = ϕ−1

j (ϕ−1
j ϕ−1

i )(p) =

ϕ−1
i (p). So a is well-defined. a is also continuous.

b :M →M

m 7→ [ϕi(m)] if m ∈ Ui

If m is also in Uj , then ϕj(m) = (ϕj ◦ ϕ−1
i )ϕi(m) = fji(ϕi(m)). So b is well-

defined. b
∣∣
Ui

= π ◦ ϕi, where π :
∐
i∈I

Vi → M is the projection onto equivalent

classes. Thus b is continuous.

M
a−→ M

b−→ M
[p] 7→ ϕ−1

i (p) 7→ [ϕiϕ
−1
i (p)] = [p] ⇒ b ◦ a = IdM

M
b−→ M

a−→ M
m 7→ [ϕi(m)] 7→ ϕ−1

i ϕi(m) = m ⇒ a ◦ b = IdM

2.3 Differentiable Manifold
Definition 2.2. A smooth or differentiable manifold is a topological man-
ifold together with an atlas A for which fij are smooth/differentiable.

⊂ Rn
Vi

ϕi(Ui ∩ Uj)

Rn

ϕj(Ui ∩ Uj)fji

Smooth means Cr for some r ⩾ 2.

Terminology. Such an atlas is called a smooth atlas. Two smooth atlases
A1 = {(Ui, ϕi) | i ∈ I}
A2 = {(U ′

k, ϕ
′
k) | k ∈ I ′}

onM are equivalent if A1∪A2 is also a smooth atlas.

2.4 Differentiable Structure
Definition 2.3. A differentiable structure onM is a maximal smooth atlas,
equivalently an equivalence class of atlases for the above.

Fact. Every maximal Cr atlas contains a unique maximal C∞ atlas. Because
of this, we will only consider C∞ manifolds.

smooth = differentiable = C∞

Definition 2.4. Let M and N be smooth manifolds, f :M → N is smooth if
∀p ∈ M , ∃ a chart (U,ϕ) with p ∈ U and a chart (V, ψ) for N with f(p) ∈ V
such that ψ ◦ f ◦ ϕ−1 is smooth.
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U V
M N

U V
Rm Rn

ψ ◦ f ◦ ϕ−1

ϕ ψ

f

Example 2.1. f : M → R is smooth if and only if f ◦ ϕ−1 is smooth for all
charts (U,ϕ).

Definition 2.5. f : M → N is a diffeomorphism if it is bijective, differen-
tiable, and f−1 is also differentiable.

Example 2.2. Every B(x, ε) ⊂ Rn is diffeomorphic to Rn.

Remark. Not every topological manifold has a differentiable structure. If it
has one, it may fail to be unique!

For n ⩽ 3, every topological manifold has a differentiable structure, unique
up to diffeomorphism.

For n ⩾ 4, there are manifolds with no differentiable structure, and there
are manifold with unusual non-diffeomorphic differentiable structures.

Example 2.3. The topological manifold R4 has infinitely many distinct differ-
entiable structures.

Example 2.4. S7 has several distinct differentiable structures.

2.5 “The Smooth Invariance of Domain”
Differentiable atlas means that transition functions between charts are diffeo-
morphisms. The way we had defined differentiable manifolds, we assume that
we always have a fixed dimension, so we define a manifold of dimension n which
is locally homeomorphic to Rn. Now we want to show that in the differentiable
case, functions as dimension given are actually redundant.

Take a manifold M . Assume we have two charts U1, U2, and ϕ1 : U1 →
V1 ⊂ Rm and ϕ2 : U2 → V2 ⊂ Rn.
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⊂ Rm ⊂ RnV1 V2

f

U1 U2

M

x

ϕ1 ϕ2

Then we have a transition map f21 = ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2).

If the transition map f12, f21 are diffeomorphisms, then m = n. Since

f12 ◦ f21 = Idφ1(U1∩U2)

f21 ◦ f12 = Idφ2(U1∩U2)

differentiate Dφ2(x)f12 ◦Dφ1(x)f21 = IdRm

Dφ1(x)f21 ◦Dφ2(x)f12 = IdRn

Both derivatives on the LHS are isomorphisms.

Rm Rn
Dφ1(x)f21

Dφ2(x)f12

which implies
m = n

This is called “the smooth invariance of domain”.
Given a smooth manifold M with a smooth atlas (Ui, ϕi), i ∈ I, we can

reconstruct M up to diffeomorphism just from ϕi(Ui), i ∈ I, together with the
structure cocycle given by the transition function fij .



Chapter 3

Tangent Spaces and
Tangent Bundle

Let M be a smooth manifold and A = {(Ui, ϕi) | i ∈ I} a differentiable atlas.
All the ϕi take values in Rm, n = dimM . Consider triples (x, i, v) ∈M×I×Rn
with x ∈ Ui. On the set of such triples define the relation (x, i, v) ∼ (y, j, w) by
x = y and Dφi(x) (ϕj ◦ ϕ

−1
i )︸ ︷︷ ︸

fji

(v) = w. Then

(Dφj(y)fij)(w) = v.

Claim 3.1. This is an equivalence relation.

(x, i, v) ∼ (y, j, w) ∼ (z, k, t)
x = y = z

Dφj(x)fkj ◦Dφi(x)fji︸ ︷︷ ︸
Dφi(x)fki

(v) = (Dφj(x)fkj)w = t

Let TM be the set of equivalence classes, and

π : TM →M

[x, i, v] 7→ x

If A ⊂M , then π−1(A) = TAM .
If A = {x}, then π−1(x) = TxM , the tangent space to M at x.
If A ⊂M is open, then A is itself a manifold, and TA = TAM .
For every chart (Ui, ϕi), we have a bijective map

Tϕi : TUi → ϕi(Ui)× Rn ⊂ Rn × Rn

[x, i, v] 7→ (ϕi(x), v)

T (Ui ∩ Uj) ϕi(Ui ∩ Uj)× Rn ⊂ Rn × Rn = R2n

ϕj(Ui ∩ Uj)× Rn ⊂ Rn × Rn

Tφi

Tφj

Tφj◦(Tφi)
−1(z, v) = (fji(z), Dzfji(v)︸ ︷︷ ︸

w

)

8



CHAPTER 3. TANGENT SPACES AND TANGENT BUNDLE 9

We give each TUi the unique topology which makes Tϕi into a homeomorphism.
This is well-defined. On TM , we define topology by requiring each TUi to be
open, and itself have the topology defined via Tϕi.

We consider A ′ = {(TUi, Tϕi) | i ∈ I} as an atlas for TM . This has C∞

transition maps, and so values TM into a C∞ manifold.
With respect to this differentiable structure on TM , the projection π :

TM →M is a differentiable map.
Lemma 3.2. For every x ∈ M , the tangent space TxM has a well-defined
structure as a R-vector space of dimn.

Proof. Suppose x ∈ Ui, then Tϕi

∣∣∣∣
TxM

: TxM → {ϕi(x)} × Rn is bijective.

Define the vector space structure on TxM to be the unique one that makes
Tϕi

∣∣∣∣
TxM

a linear isomorphism. If x ∈ Uj , then fji : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is a diffeomorphism. The derivative is linear

Dφi(x)fji : R
n → Rn.

This is an isomorphism of the vector space. This shows that the vector space
structure on TxM defined using (Uj , ϕj) instead of (Ui, ϕi) is isomorphic to the
one gotten from Ui.

For every x ∈M , π−1(x) = TxM is a vector space.
Suppose f :M → N is a differentiable map between differentiable manifolds.

Rm Rn

f(x)
N

Vi

x Ui
M

f

ϕi ψi′

ψi′ ◦ f ◦ ϕ−1
i

Define Df : TM → TN

[x, i, v] 7→ [f(x), i,Dφi(x)(ψi′ ◦ f ◦ ϕ−1
i )(v)]

Suppose (Uj , ϕj) is another chart for M with x ∈ Uj .

[x, i, v] = [x, ,Dφi(x)fji(v)] 7→ [f(x), i′, Dφj(x)(ψi′ ◦ f ◦ ϕ−1
j )Dφi(x)fji(v)]

(ψ ◦ f ◦ ϕ−1
j ) ◦ fji = (ψ ◦ f ◦ ϕ−1

j ) ◦ (ϕj ◦ ϕ−1
i ) = ψ ◦ f ◦ ϕ−1

i

Dφj(x)(ψ ◦ f ◦ ϕ−1
j ) ◦Dφi(x)fji = Dφi(x)(ψ ◦ f ◦ ϕ−1

i )

In the same way, one checks that Df does not depend on the chart used for N .
Df

∣∣∣∣
TxM

: TxM → Tf(x)N ⊂ TN is a linear map between tangent spaces.

[x, i, v] 7→ [f(x), i′, Dφi(x)(ψi′ ◦ f ◦ ϕ−1
i )(v)]
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Definition 3.1. Dxf := Df

∣∣∣∣
TxM

is the derivative of f at x ∈M .



Chapter 4

Paracompactness

4.1 Compact and Paracompact
Definition 4.1. A topological space (x,O) is compact if every open covering
has a finite subcover.

Example 4.1.

• Compact {x}, [0, 1], S1, Sn, Tn.

• Not compact (0, 1), (0, 1], R, Rn.

Definition 4.2. A topological space (X,O) is paracompact if every open
covering has a locally finite refinement.

Definition 4.3. Let {Ui | i ∈ I}, be a collection of subsets in X. This collection
is locally finite if ∀x ∈ X, there exists an open neighborhood Ux, s.t. Ui∩Ux 6=
∅ for only finitely many i ∈ I.

Definition 4.4. Let Ui, i ∈ I be a covering of X, i.e.
⋃
i∈I

Ui = X. A refine-

ment of this covering is a covering by subsets Vk, k ∈ K, such that ∀k ∈ K,
∃i = i(k) ∈ I, s.t. Vk ⊂ Ui.

Proposition 4.1. Let {Ui | i ∈ I} be an open covering of a manifoldM . There
exists an atlas A = {(Vk, ϕk) | k ∈ K} such that

(1) ϕk(Vk) = B(xk, 3) ⊂ Rn;

(2) Wk = ϕ−1
k (B(xk, 1)) form a covering of M ;

(3) The Vk form a locally finite refinement of the covering by the Ui.

Proof. Step 1: There exists a sequence Gi, i = 1, 2, . . . of open subsets on M

with Gi ⊂ Gi+1 ∀i, Gi compact ∀i, and
∞⋃
i=1

Gi =M .

The topology of M has a countable basis consisting of open sets Aj , j =
1, 2, . . ., with compact closures G.

G1 = A1. Suppose Gk has been defined as Gk = A1 ∪ · · · ∪Ajk . Let jk+1 be
the smallest natural number for which

Gk ⊂ A1 ∪ · · · ∪ Ajk+1

11
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Define Gk+1 := A1 ∪ · · · ∪ Ajk+1
. This sequence of Gk has all the properties

required by Step 1.
Step 2: Given the open covering of M by the Ui, we can choose a chart

(Vx, ϕx) for every x ∈M , so that x ∈ Vx, ϕx(Vx) = B(yx, 3).
Let Wx = ϕ−1

x (B(yx, 1)). We may assume the Vx form a refinement of the
Ui, i.e. ∀x, ∃i = i(x), s.t. Vx ⊂ Ui.

Each set Gk \Gk−1 can be covered by finitely many such Wxi
, i ∈ {1, . . . , l},

such that, moreover,

Vxi
⊂ Gk+1 \Gk−2 = Gk+1 ∩ (M \Gk−2).

Gk−2 ⊂ Gk−1 ⊂ Gk ⊂ Gk+1

Now let x ∈ M ⇒ m ∈ Gi. Take Gi \ Gi−1. This will intersect only finitely
many V ’s. So Vxi are a locally finite refinement.

Example 4.2. Let M be compact. ∀x ∈ M , ∃ a chart of this form around x,
{Wx | x ∈ M} is an open covering of M . Because M is compact, ∃x1, . . . , xl ∈

M , s.t.
l⋃
i=1

Wxi
=M .

4.2 Partition of Unity
Definition 4.5. Let M be a smooth manifold. Let {Ui | i ∈ I} be an open
covering of M . A smooth partition of unity on M subordinate to the
covering {Ui | i ∈ I} is a collection of smooth functions ρj :M → R such that
ρj ⩾ 0, ∀j ∈ J for which the supports of the ρj form a locally finite refinement
of the Ui and

∑
j∈J

ρj ≡ 1.

Definition 4.6. If f : M → R is any continuous function, define supp(f) =
{x ∈M | f(x) 6= 0}.

In the definition of partition of unity, we want supp(ρj) ⊂ Ui(j).

Theorem 4.2. If M is any smooth manifold and {Ui | i ∈ I} is any open
covering, then there is a subordinate smooth partition of unity.

Proof. First consider the following smooth function f : R → R.

f(x) =

 exp

(
1

x(x− 1)

)
for 0 ⩽ x ⩽ 1

0 otherwise

is a C∞ function, a bump function.
−0.5 0.5 1 1.5

0.5

1

1.5

2
·10−2

x

f(x)
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g(x) =

∫ x

−∞
f(t) dt∫

R
f(t) dt

is also C∞.
−0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

g(x)

Given the Ui, construct an atlas in the proof of the Proposition 4.1 {(Vk, ϕk) |
k ∈ K}.

Define ρk :M → R so that it is C∞ and

ρk

∣∣∣∣
Wk

≡ 1

ρk ⩾ 0

supp(ρk) ⊂ Vk

The supports are thus a locally finite refinement of Ui and s =
∑
k∈K

ρk is defined

everywhere> 0.
Define ρk :=

ρk
s
,
∑
k∈K

ρk ≡ 1.



Chapter 5

Submanifold

5.1 Submanifold
Recall M is a smooth manifold and U ⊂M open ⇒ U is a smooth manifold.

We want a broader definition of submanifold, e.g. incorporating things like
Sn ⊂ Rn+1 or

( ) ⊆

R2

Definition 5.1. A subset N ⊂ M , where M is a smooth manifold called a
submanifold if for every point p ∈ N , there exists a chart for M , centered at
p, say (U,ϕ), such that

ϕ(N ∩ U) = {x1 = · · · = xk = 0} ∩ ϕ(U) ⊂ Rm

where dimM = m and k is some fixed non-negative integer.

Remark. Clearly, dimN = m− k ⩽ m = dimM .

5.2 Immersion, Submersion and Embedding
Definition 5.2. Let f :M → N be a map of smooth manifolds and p ∈M .

(1) f is called an immersion at p, if Dpf : TpM → Tf(p)N is injective.

(2) f is called a submersion at p, if Dpf is surjective.

(3) f is called an immersion/submersion, if it is an immersion/submersion
at all points in M .

(4) f is called an embedding, if it is an immersion and a homeomorphism
onto its image.

Example 5.1.

14
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(1) i : Rm → Rn with n ⩾ m is an immersion (and an embedding).
(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

(2) π : Rm → Rn with m ⩾ n is a submersion.
(x1, . . . , xn, xn+1, . . . , xm) 7→ (x1, . . . , xn)

(3) (a, b)
γ−→ R2 is an immersion but not an embedding.

Similarly, is an immersion but not an embedding.

Remark. If f : M → N is an immersion, dimM ⩽ dimN . If f : M → N is a
submersion, dimM ⩾ dimN .

Theorem 5.1. Let f : M → N be an immersion at p ∈ M . Then, there exist
charts (U,ϕ) around p and (V, ψ) around q = f(p), s.t. ψ ◦ f ◦ϕ−1 = i

∣∣∣∣
φ(U)

, i.e.

ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Proof. Take charts (U0, ϕ0) around p and (V0, ψ0) around q. The Jacobi matrix
of ψ0 ◦ f ◦ ϕ−1

0 at 0 has rank m = dimM by assumption. After reordering the
coordinates of ψ0, we obtain a new chart (V0, ψ), s.t. for F = ψ ◦ f ◦ ϕ−1,(
∂Fi
∂xj

)
i = 1, . . . ,m

j = 1, . . . ,m

is invertible.

Now define G : ϕ(U0)× Rn×m → Rn

(x1, . . . , xm, xm+1, . . . , xn) 7→ F (x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn)

D0G =


(
∂Fi
∂xj

)m
i,j=1

∗

0 Id

 is invertible. By the inverse function theorem,

we find
0 ∈ ϕ(U) ⊆

open
ϕ(U0) 0 ∈ ψ(V ) ⊂

open
ψ(V0)

and a smooth function H

H : ψ(V ) → ϕ(U)× U1

s.t. G ◦H = Id and H ◦G = Id where defined.
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F

i
G H

Now set ψ̃ = H ◦ ψ, then ψ̃ ◦ f ◦ ϕ−1
0 = H ◦ F = H ◦G ◦ i = i.

Remark. We only needed to modify the chart for the target.

We also have

Theorem 5.2. If f : M → N is a submersion (m ⩾ n) at p ∈ M , there are
charts (U,ϕ) around p and (V, ψ) around q = f(p), s.t. ψ◦f ◦ϕ−1(x1, . . . , xm) =
(x1, . . . , xn).

Proof. Take arbitrary charts (V, ψ) and (U0, ϕ0) around q, respectively p. After
reordering coordinates of ϕ0, we may assume for F = ψ ◦ f ◦ ϕ−1

0 , we have(
∂Fi
∂xj

)n
i,j=1

is invertible. Define

G(x1, . . . , xn, xn+1, . . . , xm) = (F1(x1, . . . , xm), . . . , Fn(x1, . . . , xm), xn+1, . . . , xm)

Then

D0G =


(
∂Fi
∂xj

)n
i,j=1

∗

0 Id


is invertible, so we have a local inverse H (possibly shrinking the domain of
definition). Then set ϕ = G ◦ ϕ0 where defined. This gives

ψ ◦ f ◦ ϕ−1 = ψ ◦ f ◦ ϕ−1
0 ◦G−1 = F ◦H = π ◦G ◦H = π

Theorem 5.3. Let f : M → N be an embedding. Then f(M) ⊂ N is a
submanifold.

Proof. Let q ∈ f(M). Because f is a homeomorphism onto its image, there is
a unique preimage p, s.t. f(p) = q and a chart centered at q, say (V, ψ), s.t.
f−1(V ) = U ⊂M admits a chart ϕ. Arguing as in the previous theorem, we can
assume (ψ ◦ f ◦ ϕ−1)(x1, . . . , xn) = (x1, . . . , xm, 0, . . . , 0), thus ψ(f(M) ∩ V ) =
{xm+1 = · · · = xn = 0} ∩ ϕ(V ).

Remark. Conversely, for any submanifold Z ⊂ N , the inclusion Z ⊂ N is an
embedding.
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5.3 Regular Value
Definition 5.3. Let f :M → N be a map of manifolds, q ∈ N is called regular
value if all points p ∈ f−1(q) satisfy that Dpf are surjective.

Remark. By a theorem of Sard, the set of regular values of a map is dense (in
N).

Fact (Sard’s Theorem). The set of regular values of a smooth map is dense in
the target manifold.

Example 5.2. If dimM < dimN ,

• every point not in the image of f is a regular value (this always holds);

• every point in the image of f is not a regular value.

Example 5.3. Let f : R2 → R
(x, y) 7→ x · y

⇝ D(x,y)f : R2 → R
=

(b,a) has full rank iff (a, b) 6= (0, 0)

Theorem 5.4. If f : M → N is smooth and p ∈ N is regular value, then
f−1(p) is a submanifold of M .

Proof. Let q ∈ f−1(p). Then by the local form for submersions, we find charts
(U,ϕ), (V, ψ) around q, p, s.t. ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xn) is the
projection. But then ϕ(f−1(p) ∩ U) = {x1 = · · · = xn = 0} ∩ ϕ(U).

5.4 Whitney’s Embedding Theorem
Theorem 5.5 (Whitney’s Embedding Theorem). Every smooth manifold of
dimension n can be embedded into R2n.

Remark.

• In general, this dimension is optimal, e.g. non-orientable surfaces (RP2,
Klein bottle) cannot be embedded into R3 (but immersed). For particular
manifold, better bonds on the dimension are possible, e.g. S1 × S1 ↪→ R3

or R2 Id
↪−→ R2.

• Anym-dimensional manifold can be immersed into R2m−a(m), where a(2m)
is the number at 1’s in the binary expansion of m.

We will only prove the following weaker version.

Theorem 5.6 (WeakWhitney’s Theorem). Every compactm-dimensional smooth
manifold can be embedded into R2m+1.

Proof. Let X be a compact smooth m-dimensional manifold.

Claim 5.7. X can be embedded into some Rk for k � 0.
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Proof. Let {(Ui, ϕi)}ni=1 be a finite atlas for X. Choose a partition of unity {ρi}
subordinate to {Ui}ni=1.

Next, define φ : X → Rk with k = n(m+ 1)

p 7→ (ρ1(p) · ϕ1(p), . . . , ρn(p) · ϕn(p), ρ1(p), . . . , ρn(p))
Then φ is an embedding.

In fact, φ is injective: Let φ(p1) = φ(p2). Choose i, s.t.

ρi(p1) = ρi(p2) 6= 0

Then
ρi(p1) · ϕi(p1) = ρi(p2) · ϕi(p2) ⇒ ϕi(p1) = ϕi(p2)

φi different
=======⇒ p1 = p2

Dpφ is injective at all p ∈M :

Dpφ : TpX → Tϕ(p)Rk ∼= Rk

Dpφ = (Dpρ1 · ϕ1(p) + ρ1(p) ·Dpϕ1, . . . , Dpρn(p) + ρn(p) ·Dpϕn, Dpρ1, . . . , Dpρn)

Thus if (Dpφ)(X) = 0 where X ∈ TpX ⇒ (Dpρi)(X) = 0, ∀i
⇒ ρi(p)Dpϕi(X) = 0, ∀i
φi different
=======⇒ X = 0

So Dpfi is injective.

Lemma 5.8. If f : A → B is an injective immersion of smooth manifold and
A is compact, then f is an embedding.

Proof. We need to show f is a closed map.
If Z ⊂ A is closed A compact

=======⇒ Z is compact
f continuous
========⇒ f(Z) compact
B Hausdorff
========⇒ f(Z) closed

Claim 5.9. If an m-manifold admits an injective immersion into Rk with k >
2m+ 1, then it admits an injective immersion into Rk−1.

Proof. The idea is to project onto a generic hyperplane.
Hyperplanes are described via their normal vectors: For [v] ∈ RPk−1 denote

by P[v] = {u ∈ Rk | 〈u, v〉 = 0} the hyperplane orthogonal to [v] and by
π[v] : Rk → P[v] the orthogonal projection.

Write φ[v] := π[v] ◦ φ : X → Rk−1.
Claim: For a generic choice of [v], φ[v] will be an injective immersion.
Assume φ[v] is not injective, i.e. there are p1 6= p2 ∈ X, s.t. φ[v](p1) =

φ[v](p2) and so φ(p1)− φ(p2) lies in the line [v], i.e. the points where φ[v] is not
injective live in the image of

(X ×X) \∆x → RPk−1

(p1, p2) 7→ [φ(p1)− φ(p2)]
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where ∆x = {(x, x)}.
By Sard’s theorem, for a set containing an open dense set of [v]’s, φ[v] will

be injective.
Similarly, consider a [V ], s.t. there exists p ∈ X with Dpφ[v] not injective,

i.e. there exists 0 6= A ∈ TpX, s.t. Dpφ[v]︸ ︷︷ ︸
Dp(π[v]◦ϕ)

(A) = 0 ⇔ (π[v] ◦ Dpφ)(A) ⇔

(Dpφ)(A) is contained in the line [V ].

Remark. X ⊂ TX submanifold via x 7→ (x, 0).

i.e. the [v]’s, s.t. φ[v] is not an immersion live in the image of

TX \X → RPk−1

(p,A) 7→ (Dpφ)(A)

where p ∈ X, A ∈ TpX. Again by Sard’s theorem, the set s.t. φ[v] is an
immersion, is open dense.

Now take a [V ] in the intersection of these dense sets.



Chapter 6

Smooth Vector Bundles

6.1 Vector Bundles
Definition 6.1. A smooth vector bundle of rank k is a pair of smooth manifolds
E, B together with a submersion π : E → B, s.t. the following hold:

(1) for every x ∈ B, the fibre π−1(x) has the structure of a k-dimensional
R-vector space.

(2) B has an open cover {Ui | i ∈ I} and diffeomorphisms ψi : π−1(Ui) →
Ui×Rk which restrict to linear isomorphisms on every π−1(x), x ∈ Ui and
satisfy π1 ◦ ψi = π.

( )
Ui x

E total space

π (bundle) projection

B base space

where π−1(x) = Ex is the fibre over x ∈ B.

dimE = dimB + dimEx = dimB + k

π−1(Ui) Ui × Rk

Ui

ψi

π π1

Ui ∩ Uj = ∅.

20
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(Ui ∩ Uj)× Rk π−1(Ui ∩ Uj) (Ui ∩ Uj)× Rk

(x, v) (x, γji(x)︸ ︷︷ ︸
∈GLk(R)

(x)(v))

ψj◦ψ−1
i

ψi ψj

Ui ∩ Uj ∩ Uk 6= ∅ ⇒ γji ◦ γil = γjl. Setting j = l gives γji = γ−1
ij . γii = Id,

∀i ∈ I. From the open covering of B by the Ui and the transition maps γij , one
can reconstruct the vector bundle π : E → B.

Definition 6.2. Let π : E → B, π′ : E′ → B be smooth vector bundles over
the same base B. An isomorphism of vector bundles is a diffeomorphism
f : E → E′ which is a linear isomorphism on every fibre and satisfy π′ ◦ f = π,
i.e.

E E′

B

f

π π′

Example 6.1.

(1) Product bundles E = B × Rk, π = π1.

Definition 6.3. A vector bundle is trivial if it is isomorphic to a product
bundle.

(2) Let B = M be any smooth manifold, E = TM is a vector bundle of
rank= dimM .

(3) Let B = S1 and take U1 × R, U2 × R. Then U1 ∩ U2 = V1 t V2.

) (

( )(
)

)
(

U1

U2

V1 V2

γij :Ui ∩ Uj → GLk(R) ⊂ Rk
2

smooth
γ12 :U1 ∩ U2 = V1 t V2 → GL1(R) = R∗ (R without origin)

x 7→

{
1 for x ∈ V1

−1 for x ∈ V2
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Construct E from this structure cocycle. Then E is the Möbius strip.

R

Rank 1 vector bundles over S1: S1 × R, TS1, E = M . Then S1 × R is
isomorphic to TS1, but TS1 is not isomorphic to E =M .

Definition 6.4. Let π : E → B be a vector bundle. A section of E is a smooth
map s : B → E, s.t. π ◦ s = IdB .

B

E B

Ids

π

x

s(x)

∈ Ex

E

π

B

Lemma 6.1. A vector bundle E π−→ B of rank k is trivial if and only if it
admits k sections s1, . . . , sk ∈ Γ(E) which are pointwise linearly independent,
where Γ(E) = {s : B → E | π ◦ s = IdB} is a R-vector space and a C∞(B)-
module.

Proof. First, assume E is trivial, and f : E → B×Rk is an isomorphism. Define
si(x) := f−1(x, ei) ∈ Γ(E), where e1, . . . , ek is any basis of Rk. Then s1, . . . , sk
are pointwise linearly independent.

Second, suppose s1, . . . , sk are linearly independent sections. Define

g : B × Rk → Ek

(x, (λ1, . . . , λk)) 7→
k∑
i=1

λisi(x)

This is a smooth map and satisfies π ◦ g → IdB .
Moreover, g is a linear isomorphism x × Rk → Ex, ∀x ∈ B. f := g−1 is a

global trivialization of E.

Corollary 6.2. A rank 1 vector bundle is trivial if and only if it has a nowhere
zero section, i.e. ∃s ∈ Γ(E), s.t. s(x) 6= 0, ∀x ∈ B.

Remark. The zero 0 ∈ Γ(E) is the section 0 : B → E

x 7→ 0 ∈ Ex

. This is called the

zero-section.

Let S1 ⊂ R2 be the unit circle as the following figure shown.
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(x, y) = p

Then TS1 ⊂ TR2 = R2 × R2 and we have

TpS
1 = R · (−y, x)

TS1 = {(x, y, s, t) ∈ R4 | x2 + y2 = 1, s = −λy, t = λx, for some λ ∈ R}

with the map

TS1 S1

(x, y, s, t) (x, y)

s

where s(x, y) = (x, y,−y, x).

Lemma 6.3. The Möbius strip M is not a trivial vector bundle.

Proof. SupposeM were trivial. Then let s : S1 →M be a nowhere zero-section.

v1v2 U1 × R v2v1 U2 × R
s is smooth hence it is continuous. The intermediate value theorem says it has
a zero. This leads to a contradiction.

6.2 Metric
Definition 6.5. A metric on a vector bundle π : E → B is a fibrewise positive
definite scalar product on Ex which depends smoothly on x ∈ B.

Smoothness can be checked/defined in one of two ways:

(1) With local trivialization:
Let ψ : π−1(U) → U × Rk

⊂

Ey
∼=−→ {y} × Rk

be a local trivialization with x ∈ U . A metric

〈 , 〉 on E induces a scalar product 〈 , 〉x on Ex, which we think of as a
scalar product gx on Rk, via the isomorphism Ex ∼=

ψ
Rk. gy, as y varies in
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U , gives a family of positive definite scalar products on Rk, dependency
on y.

g : U → V = symmetric bilinear forms on Rk.
y 7→ gy

Smoothness of 〈 , 〉 means that in every local trivialization, g is a smooth
map.

(2) Smoothness of 〈 , 〉 means that for any two s1, s2 ∈ Γ(E), 〈s1, s2〉 ∈
C∞(B).

〈s1, s2〉 : B → R
x 7→ 〈s1(x), s2(x)〉x

Proposition 6.4. Every vector bundle admits a metric.

Proof. Let {Ui | i ∈ I} be a covering of B by trivializing open sets for E,
ψi : π

−1(Ui) → Ui × Rk.
For y ∈ Ui, let 〈 , 〉i,y be the scalar product on Ey obtained from the standard

scalar product on Rk via the isomorphism ψ : Ey → {y} × Rk.
Let ρi be a partition of unity subordinate to the covering of B by the Ui.

Define 〈 , 〉 :=
∑
i

ρi · 〈 , 〉i. This is a metric! It satisfies
∑
ρi ≡ 1.

Remark. This proof uses positive-definiteness.

6.3 Constructions with Vector Bundles
(1) Subbundles

If π : E → B is a vector bundle of rank k, then a subbundle of rank l ⩽ k
is a submanifold F ⊂ E such that π

∣∣
F
: F → B is a vector bundle of rank

l. For every x ∈ B, F ∩Ex = Fx is a l-dimensional subspace of Ex ∼= Rk.
Let π : E → B, π′ : E′ → B be vector bundles and f : E → E′ a smooth
map with π′ ◦ f = π and f

∣∣
Ex

is linear for all x ∈ B.

If rank(f
∣∣
Ex

) is a constant function of x ∈ B, then im(f) ⊂ E′ is a
subbundle of rank = rank(f) and ker(f) ⊂ E is a subbundle of rank =
rankE − rank f .

(2) Quotient bundles
If E is a vector bundle, F ⊂ E a subbundle, the

⋃
x∈B

(Ex/Fx) is a vector

bundle over B, called the quotient bundle.

(3) If E has a metric 〈 , 〉, F⊥ = {v ∈ Ex | x ∈ B, 〈v, w〉x = 0, ∀w ∈ Fx} is a
subbundle, and F⊥ ∼= E/F .

(4) Whitney sums

E
π−→ B, E′ π′

−→ B are vector bundles.
E⊕E′ → B is the vector bundle with (E⊕E′)x = Ex⊕E′

x, for all x ∈ B.
Let {Ui | i ∈ I} be an open cover of B which is simultaneously trivializa-
tion for E and for E′. Let γij : Ui∩Uj → GLk(R), γ′ij : Ui∩Uj → GLk′(R)
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be the corresponding cocycles of transition maps. Then E⊕E′ is the vec-
tor bundle of rank k + k′ defined by

Ui ∩ Uj → GLk+k′(R)

x 7→
(
γij(x) 0

0 γ′ij(x)

)
(5) Dual bundles

If π : E → B is a vector bundle of rank k, the dual bundle E∗ π−→ B is the
rank k vector bundle given by γij(x) ∈ GLk(R) = Hom(Rk,Rk).

λ : R → Rk

λ∗ : (Rk)∗ 7→ (Rk)∗ defined by λ∗(ϕ)(x) = ϕ(λ(x))

Hom((Rk)∗, (Rk)∗) 3 GLk(R) 3 γ∗ij(x)

If F ⊂ E is a subbundle, then

F ⊕ F⊥ ∼= E∼=

F ⊕ (E/F )

Let G ⊂ GLk(R) be a subgroup.

Definition 6.6. A G-structure on a rank k vector bundle E π−→ B is a system
of local trivializations whose transition maps take values in G.
Remark. A G-structure is sometimes called a G-reduction.

(1) G = {e}.
In this case, a G-structure is a global trivialization.

(2) G = GL+
k (R) orientation-preserving isomorphism Rk

∼=−→ Rk. In this case,
a G-structure on E is an orientation for E, i.e. a consistent choice of
orientation for all Ex varying smoothly x ∈ B.

The Möbius strip as a vector bundle over S1 does not admit an orientation.
Lemma 6.5. A rank 1 vector bundle is trivial if and only if it is orientable.
Proof. If E is trivial, then it is orientable. Conversely, suppose E is orientable
and of rank 1. Then E has a G-structure for GL+

1 (R) = R>0.

γij : Ui ∩ Uj → R>0

Without loss of generality, all Ui∩Uj are
either ∅ or diffeomorphic to bundles.
Then we can define the γij smoothly to
be ≡ 1. Then E is trivial since it has a
G-structure for the trivial group.

Ui Uj

Rk Rk

γij(x) ∈ λ ∈ R>0



CHAPTER 6. SMOOTH VECTOR BUNDLES 26

(3) G = O(k).
In this case, a G-structure is a choice of metric 〈 , 〉 on E. Every E admits
such a G-structure.

(4) G = SO(k) = GL+
k (R) ∩O(k).

6.4 Pullback Bundles
Suppose f : M → N is a smooth map, and π : E → N is a smooth vector
bundle over N .

Definition 6.7. f∗E := {(x, v) ∈M ×E | f(x) = π(v)} is the pullback bundle
of E under f .

That is the following diagram commute:

f∗E E

M N

π2

π1 π

f

And we have
π−1
1 (x) = π−1(f(x)) = Ef(x)

x
V

f(x)
U

π−1(U) ∼= U × Rk

If E is a vector bundle of rank k over N , then f∗E is a vector bundle of rank k
over M .

6.5 Bundles Homomorphisms
Definition 6.8. If πE : E →M , πF : F → N are smooth vector bundles, then
a homomorphism of vector bundles is a smooth map h : E → F , which restricts
to every Ex ⊂ E as a linear map into a fibre of F .

f(x) = πF ◦ h(v) for any v ∈ Ex. This
is well-defined and smooth.

E F

M N

h

πE πF

f

commute

Example 6.2. π2 : f∗E → E is a homomorphism of vector bundle.

Example 6.3. If f : M → N is any smooth map, then Df : TM → TN is a
homomorphism of vector bundle.
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TM

M N
f

x f(x)

Dxf : TxM → Tf (x)N

f

ϕ(x)

ϕ ψ

ψ(f(x))

Let h : E → F be a homomorphism of vector bundles covering f :M → N .

E f∗F F

M N

h

πE

h

π2

π1 πF

Define h : E → f∗F by h(v) = (πE(v), h(v)) ∈M × F . Then

π1(h(v)) = π1(πE(v), h(v)) = πE(v)

TM f∗TN TN

M N

Df

Df

f

Let N = R, then

M × R

TM f∗TR TR

M R

∼=Df

f

where Df : TM →M × R
v 7→ (π(v), (Dπ(v)f)(v)︸ ︷︷ ︸

linear form in
tangent space

)

and TR = R×R, the first R represents

manifold and the second R represents vector space.
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If f :M → R is smooth, then its derivative Df is a section in Hom(TM,M×
R) = T ∗M = (TM)∗. Three different interpretation of derivative of smooth
function:

Df : TM → TR Df : TM →M × R df ∈ Γ(T ∗M)
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Flows

7.1 Velocity Vector
Let M be a smooth manifold, c : R → M a smooth map. (c is called smooth
curve.)

Definition 7.1. ċ(t) ∈ Tc(t)M is defined by

Dtc(1) = Dtc

(
∂

∂t

)
where TR = R× R(

t, λ · ∂
∂t

). This is the velocity vector of c at t (at c(t)).

Example 7.1. M = Rn, then c(t) = (x1(t), . . . , xn(t)).

ċ(t) = (ẋ1, . . . , ẋn) =

(
∂x1
∂t

, . . . ,
∂xn
∂t

)
∈ Tc(t)Rn = Rn

7.2 Global Flows
Definition 7.2. A (global) flow on a smooth manifold M is a smooth map

ϕ :M × R →M

satisfying the following properties:

ϕ(x, 0) = x

ϕ(ϕ(x, t), s) = ϕ(x, t+ s)

}
∀x ∈M, t, s ∈ R

Write ϕ(x, t) = ϕt(x), then

ϕ0 = IdM

ϕt ◦ ϕs = ϕt+s

}
⇒ ϕ−t = (ϕt)

−1

Every ϕt is a smooth map M →M with a smooth inverse, so ϕt ∈ Diff(M).
A flow ϕ defines a group homomorphism: R → Diff(M).

29
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Definition 7.3. X(M) := Γ(TM) is the vector space of vector fields on M .

Given a flow ϕ, we can define X ∈ X(M) by

Xp =

(
∂

∂t
ϕt(p)

) ∣∣∣∣
t=0

= (D0ϕ)

(
∂

∂t

)
where

ϕ : R →M

t 7→ ϕt(p)

If p = ϕs(q), then

Xp =

(
∂

∂t
ϕt(p)

) ∣∣∣∣
t=0

=

(
∂

∂t
ϕt+s(q)

) ∣∣∣∣
t=0

=

(
∂

∂t
ϕs(ϕt(q))

) ∣∣∣∣
t=0

= Dqϕs(Xq)

Lemma 7.1. The vector field X ∈ X(M) obtained by differentiating a flow ϕ
is invariant under Dϕ.

7.3 Local Flows
Let M be a smooth manifold.

Definition 7.4. A local flow on M is a covering of M by open sets Ui and a
family of smooth maps

ϕi : Ui × (−εi, εi) →M

s.t. ϕi0 = IdUi
and ϕit ◦ ϕis = ϕit+s whenever all 3 terms are defined.

Proposition 7.2. For every vector field X ∈ X(M), there exists a local flow
{Ui | i ∈ I}, ϕi such that

∂

∂t
ϕit(p)

∣∣∣∣
t=0

= Xp

whenever p ∈ Ui.

Proof. The statement is local in M , so we can work in a chart, so locally in Rn.
Using coordinates in Rn, we need to solve locally a linear system of ODEs with
C∞ coefficients. This can be done!

If Ui ∩ Uj 6= ∅, then we require ϕit(x) = ϕjt (x) for all x ∈ Ui ∩ Uj and
|t| < min{εi, εj}.

Given X ∈ X(M), we can locally integrate X to get a local flow in this sense.

Definition 7.5. Two local flows are equivalent if their union is also a local flow.

This is an equivalent relation!

Proposition 7.3. There is a one-to-one corresponding between equivalence
classes of local flows on M and vector fields X ∈ X(M).

(Ui, ϕ
i), i ∈ I ⇝ X ⇝ (Vj , ϕ

j), j ∈ J equivalent to (Ui, ϕ
i), i ∈ I.

X ⇝ (Vj , ϕ
j), j ∈ J ⇝ X.
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Definition 7.6. A vector field X is complete if there is a local flow ϕi :
Ui × R →M in the corresponding equivalence class.

Under the one-to-one correspondence in the Proposition 7.3, complete vector
fields give global flows ϕ :M × R →M , where ϕ(x, t) := ϕi(x, t) if x ∈ Ui.

Proposition 7.4. If X ∈ X(M) has compact support

supp(X) := {x ∈M | X(x) 6= 0}

then it is complete.

Proof. Step 1: Consider a local flow (Ui, ϕ
i) for X, i ∈ I. Since the Ui cover

M , they cover supp(X). Since supp(X) is compact, there exist finitely many

Ui, say U1, . . . , Uk, such that supp(X) ⊂
k⋃
i=1

Ui.

Let U0 :=M \ supp(X) ⊂
open

M .

Define ϕ0 : U0 × R →M

(x, t) 7→ x

, ∀x ∈ U0, t ∈ R.

U0, U1, . . . , Uk form a covering of M , and the pair (Ui, ϕi), i ∈ {0, . . . , k} are a
local flow for X. Set ε := min{ε1, . . . , εk} > 0.

ϕt(x) = ϕit(x) is defined for all x ∈M and all |t| < ε.
Step 2: Let X be any vector field which admits a local flow (Ui, ϕ

i) defined for
all times |t| < ε. Then we can define ϕiNt(x) := ϕit ◦ · · · ◦ ϕit(x)︸ ︷︷ ︸

N times for all N∈N, |t|<ε

.

ϕs+t = ϕs ◦ ϕt whenever both are defined.

Corollary 7.5. If M is compact, then all X ∈ X(M) are complete.

Example 7.2. Compact support is sufficient for completeness, but not neces-
sary.
∂

∂x1
6= 0 everywhere

Example 7.3. M = Rn \ {0}, X =
∂

∂x1
6= 0 everywhere

If p = (−s, 0, . . . , 0), s > 0, then ϕ(p, t)
is not defined for t ⩾ s.
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Lie Theory

8.1 Lie Derivative
Let M be a smooth manifold, f ∈ C∞(M) = C∞(M,R) and X ∈ X(M).

Definition 8.1. (LXf)(p) =
∂

∂t
ϕ∗
t (f)(p)

∣∣∣∣
t=0

, where ϕ is the flow of X.

=
∂

∂t
f(ϕt(p))

∣∣∣∣
t=0

= lim
t→0

f(ϕt(p))− f(ϕ0(p))

t

= lim
t→0

f(ϕt(p))− f(p)

t
= Dpf(X(p)) = dpf(X(p))

Dpf : Tp → Tf(p)R = R

↔

dpf : T ∗
pM

ϕt(p)

p

Xp

The Lie derivative LX sends smooth functions to smooth functions

LX : C∞(M) → C∞(M)

Lemma 8.1. LX(f · g) = (LXf) · g + f · (LXg) for all f, g ∈ C∞, where

f · g :M → R

Like Leibniz rule in derivative (fg)′ = f ′g + fg′, we have

Dp(f · g) = (Dpf) · g + f · (Dpg)

We can see that
L : X(M) → Der(C∞(M))

X 7→ LX

Definition 8.2. If A is a R-algebra, then

Der(A) := {d : A→ A | d is R-linear and d(a · b) = d(a) · b+ a · d(b)}

32
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If λ ∈ R, then LλXf = λLXf , ∀f ∈ C∞(M). In fact, for all g ∈ C∞(M),
LgXf = gLXf , ∀f ∈ C∞(M). Moreover, LX+Y (f) = LXf + LY f .

Proof. ∀p ∈M , we have

LX(f · g)(p) = ∂

∂t
(f · g)(ϕt(p))

∣∣∣∣
t=0

=
∂

∂t
(f(ϕt(p)) · g(ϕt(p)))

∣∣∣∣
t=0

= (LXf)(p) · g(p) + f(p) · (LXg)(p)

Proposition 8.2. The map X(M) → Der(C∞(M))

X 7→ LX

is an isomorphism of vector

spaces.

Proof. (1) The map is linear.
(2) The map is injective: If X 6≡ 0, then ∃p ∈ M , s.t. X(p) 6= 0. Consider
ϕ : Up×(−ε, ε) →M be part of a local flow of x. ∃f ∈ C∞(Up), s.t. f(ϕt(p)) ≡ t.
After multiplication with a suitable bump function and extension by 0, we may
arrange f ∈ C∞(M). (LXf)(p) =

(
∂

∂t
t

) ∣∣∣∣
t=0

= 1, so LX 6≡ 0.

(3) The map is surjective: Let ∆ ∈ Der(C∞(M)).

Step 1: If U ⊂M is open, and f ∈ C∞(M) is such that f
∣∣∣∣
U

≡ 0, then ∆(f)

∣∣∣∣
U

≡

0. For x ∈ U , take ϕ ∈ C∞(M) with ϕ(x) = 0 and ϕ
∣∣∣∣
M\U

≡ 1.

⇒ ϕ · f = f ⇒ ∆(f) = ∆(ϕ) · f +∆(f) · ϕ
⇒ (∆f)(x) = (∆ϕ)(x) · f(x)︸︷︷︸

=

0

+(∆f)(x) · ϕ(x)︸︷︷︸

=

0

= 0

Step 2: If there is an open neighborhood U of a point x ∈ M , such that
f

∣∣∣∣
U

≡ g

∣∣∣∣
U

, then (∆f)(x) = (∆g)(x). (Apply Step 1 to f − g.)

Step 3: Let Gx be the R-vector space of germs of C∞ functions at x ∈ M . We
can define

∆(x) : Gx → R
[f ] 7→ (∆f)(x)

Step 2 says that this is well-defined. ∆(x) is a derivation on the algebra Gx.
Using a chart, we may assume M = Rn, x ∈ Rn, ∆(x) =

n∑
i=1

λi
∂

∂xi
. So ∆(x) is

a tangent vector in TxM , and it depends smoothly on x. Define X ∈ X(M) by
setting X(x) = ∆(x).

Thus, ∆ = LX .

Lemma 8.3. For X, Y ∈ X(M), there is a unique [X,Y ] ∈ X(M), s.t. LXLY −
LY LX = L[X,Y ].
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Proof.

(LXLY − LY LX)(f · g) = LX((LY f) · g + f · (LY g))− LY ((LXf) · g + f · (LXg))
= (LXLY f) · g +(((((((

(LY f) · (LXg) +(((((((
(LXf) · (LY g) + f · (LXLY g)

− (LY LXf) · g −(((((((
(LXf) · (LY g)−(((((((

(LY f) · (LXg)− f · (LY LXg)
= (LXLY − LY LX)(f) · g + f · (LXLY − LY LX)(g)

∀f, g ∈ C∞(M), so LXLY −LY LX is a derivation on C∞(M). By the surjectivity
in the Proposition 8.2, ∃[X,Y ] ∈ X(M), s.t.

L[X,Y ] = LXLY − LY LX

By the injectivity in the Proposition 8.2, this vector field is unique.

Definition 8.3. [X,Y ] is the Lie bracket of X and Y .
[ , ] : X(M)× X(M) → X(M) is bilinear and skew-symmetric.

Lemma 8.4 (Jacobi Identity). [[X,Y ], Z]+[[Z,X], Y ]+[[Y, Z], X] = 0, ∀X,Y, Z ∈
X(M).

8.2 Lie Algebra and Lie Group
Definition 8.4. A Lie algebra g is a R-vector space, with a map [ , ] : g×g →
g, which is bilinear, skew-symmetric, and satisfies the Jacobi identity.

X(M) is a Lie algebra with the Lie bracket.

Definition 8.5. A Lie group G is a smooth manifold with a group structure

m : G×G→ G

(g1, g2) 7→ g1g2 = g1 · g2

s.t. m and i : G→ G

g 7→ g−1

are smooth maps.

Example 8.1.

(1) G = GLk(R) ⊂ Mat(k × k,R) = Rk2 .

(2) Subgroups of GLk(R) which are also submanifolds, e.g. GL+
k (R), O(k),

GLk(C) ⊂ GL2k(R).

If G is a Lie group and g ∈ G, then

left multiplication lg : G→ G

h 7→ g · h
right multiplication rg : G→ G

h 7→ h · g
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are diffeomorphisms.

G G×G G

h (g, h) g · h = lg(h)

m

lg

lg−1 is also a smooth map lg ◦ lg−1 = lg−1 ◦ lg = IdG.
For every g ∈ G,

Delg : TeG→ TgG

is an isomorphism.
dimG = n, TeG = Rn

G× TeG
t−→ TG

(g, v) 7→ (Delg)(v)

Lemma 8.5. This is an isomorphism of vector bundle, so TG is trivial.

Proof.
G× TeG TG

G G

t

π1 π

t is smooth. Delg is an isomorphism TeG→ TgG for any g ∈ G.

Definition 8.6. X ∈ X(G) is left-invariant if X(g) = (Delg)X(e).

Lemma 8.6. If X is left-invariant, then (Dglh(X(g)) = X(h · g).

Proof. ((Dglh)(Delg)(X(e))) = (Delh·g)(X(e)) = X(h · g).

Definition 8.7. g ⊂ X(G) is linear subspace of left-invariant vector field.

[ , ] sends pairs of left-invariant vector fields to a left-invariant vector field.
⇒ g ⊂ X(G) is a sub-Lie algebra.

Definition 8.8. g = L(G) is the Lie algebra of the Lie group G. dim g =
dimG.

Definition 8.9. X,Y ∈ X(M). ϕt is the flow of x.

LXY = “ ∂
∂t
Y (ϕt(p))

∣∣∣∣
t=0

”, Y (ϕt(p)) ∈ Tφt(p)M

=
∂

∂t
Dφt(p)ϕ−t(Y (ϕt(p)))

∣∣∣∣
t=0

= lim
t→0

Dφt(p)ϕ−t(Y (ϕt(p)))− Y (p)

t
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Define g(t, x) =
∫ 1

0

f ′(ts, x) ds, where f ′(u, x) = ∂f

∂u
and f(u, x) = f(ϕu(x)),

for any f ∈ C∞(M).

tg(t, x) =

∫ 1

0

f ′(ts, x) · t · ds =
∫ t

0

f ′(u, x) du,where u = ts

= f(t, x)− f(0, x) = f(t, x)− f(x)

⇒ f(t, x) = f(x) + tg(t, x), f ◦ ϕ−t = f(−t, x).

Claim 8.7. g(0, x) = (LXf)(x).

Proof. g(0, x) = lim
t→0

g(t, x) = lim
t→0

1

t
(f(t, x)− f(x)) = (LXf)(x).

Theorem 8.8. LXY = [X,Y ], ∀X,Y ∈ X(M).

Proof. Using the isomorphism of X(M) and Der(C∞(M)), we need to prove

LLXY f = L[X,Y ]f, f ∈ C∞(M)

Let ϕt be the flow of X and f(t, x) = f(ϕt(x))

= f(x) + tg(t, x)

with g(0, x) = LXf .

LY LXf = LY g(0,−) = lim
t→0

LY g(t,−).

Zt =
1

t
(Dφt(p)ϕ−t(Y (ϕt)(p))− Y (p)), so that

LXY = lim
t→0

Zt

LLXY f = lim
t→0

LZtf = lim
t→0

1

t
(LDφtφ−t(Y )f − LY f)

= lim
t→0

1

t
(LY (φ−t(−))(f ◦ ϕ−t)− LY f)

= lim
t→0

1

t
(LY (φt(p))(f − tg−t)− LY (p)f)

= lim
t→0

1

t
(LY (φt(p))(f − tg−t)− LY (p)f)

= lim
t→0

1

t
(LY (φt(−))f − LY (−)f)− lim

t→0
LY (φt(−))g−t

= LXLY f − LY LXf = L[X,Y ]f

Theorem 8.9. Let X,Y ∈ X(M), ϕt, ϕs flows for x respectively Y . Then
[X,Y ] ≡ 0 ⇔ ϕt ◦ ϕs = ϕs ◦ ϕt, ∀s, t.

Proof.

“⇐”
ϕt, ϕs commuting means that ϕt maps
flowlines of Y to flowlines of Y .
⇒ Dϕt(Y ) = Y .

[X,Y ] = LXY = lim
t→0

1

t
(Dϕt(Y )−Y ) = 0

ϕs(p)

p

ϕsϕt(p) = ϕtϕs(p)

ϕt(p)
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“⇒” For p ∈M , consider
v(t) = Dφt(p)ϕ−tY (ϕt(p)) ∈ TpM

v̇(t) =
∂

∂t
v(t)

∣∣∣∣
t=0

= (LXY )(p) = [X,Y ](p) = 0

Take p = ψs(q), then
∂p

∂s
= Y .

∂

∂s
ϕt(p) = (Dϕt)

(
∂p

∂s

)
= Dϕt(Y ) = Y

since v(t) is independent of t. So ϕt(ψs(q)) is a flowline of Y starting at
p = ϕt(q) at time s = 0.
By the uniqueness of the flowline of Y through p, we have

ϕtψs(q) = ψs(p) = ψs(ϕt(q))

ϕt ◦ ψs = ψs ◦ ϕt whenever both sides are defined.

Theorem 8.10. Let X1, . . . , Xk ∈ X(M), s.t. [Xi, Xj ] ≡ 0 for all i, j, and
X1(p), . . . , Xk(p) are linearly independent in TpM for all p ∈ M . Then around
every point p ∈M , there is a chart (U,ϕ), such that Dqϕ(Xi(q)) =

∂

∂Xi
for all

i and all q ∈ U .
Proof. The problem is local, so we may assume M is Rn.

After a linear change of basis for Rn, we may assume Xi(0) =
∂

∂xi
for

i ∈ {1, . . . , k}. So X1(0), . . . , Xk(0),
∂

∂xk+1
, . . . ,

∂

∂xn
is a basis for Rn = T0Rn.

∃ open neighborhood U of 0 in Rn and an ε > 0, s.t. the local flows ϕi of Xi

are defined for all (p, t) ∈ U × (−ε, ε). Define f : U → Rn by
f(x1, . . . , xn) = ϕ1

X1
◦ ϕ2

X2
◦ · · · ◦ ϕkXk

(0, . . . , 0, xk+1, . . . , xn)

Without loss of generality, this is defined for all (x1, . . . , xn) ∈ U . By the
assumption [Xi, Xj ] ≡ 0, the ϕi and ϕj commute.

f is smooth and
∂f

∂xi
(0) = Xi(0) for i ∈ {1, . . . , k}, We also have ∂f

∂xi
(x) = Xi(x)

∂f

∂xi
(0) =

∂

∂xi
for all i

f(0) = 0

f(0) = 0.

D0f

(
∂

∂xi

)
=

∂

∂xi
for i ⩾ k + 1.

For any x ∈ U , we have Dxf

(
∂

∂i

)
= Xi(f(x)) for i ⩽ k.

If U is small enough, then f : U → f(U) is a diffeomorphism. Define ϕ := f−1,
Dpϕ(Xi) =

∂

∂xi
for all p ∈ f(U).
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The Frobenius Theorem

9.1 Integral Submanifold
IfMn is decomposed into k-dimensional manifolds Lk ⊂M which are the image
of injective immersions, the i : L ↪→ M and (Dpi)(TpL) is a k-dimensional
subspace of Ti(p)M .

Suppose that E ⊂ TM is a rank k subbundle.

Definition 9.1. A submanifold S
i
⊂M is called an integral submanifold for

E if ∀p ∈ S,
(Dpi)(TpS) ⊂ Ep

Definition 9.2. E is called integrable if through every point p ∈M , there is
a k-dimensional integral submanifold for E.

9.2 The Frobenius Theorem
Theorem 9.1 (Frobenius Theorem). For a rank k subbundle E ⊂ TM , the
following are equivalent:

(1) E is integrable.

(2) Γ(E) is closed under [ , ].

(3) there is an atlas (Ui, ϕi) for M , i ∈ I, such that ∀p ∈ Ui,

(Dpϕi)(Ep) 3
∂

∂xj
for j ∈ {1, . . . , k}

Proof. (3)⇒(1): Let (U,ϕ) be a chart as in (3). In ϕ(U), the slices given by

xk+1 = ck+1, . . . , xn = cn

are k-dimensional integral submanifold of Dϕ(E). Applying ϕ−1, we obtain

k-dimensional integral submanifold for E
∣∣∣∣
U

.

38
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(1)⇒(2): Let L ⊂ M be a k-dimensional integral submanifold for E through
p ∈M . If X,Y ∈ Γ(E), then there exist unique X̃, Ỹ ∈ X(L), s.t.

Di(X̃) = X

∣∣∣∣
i(L)

Di(Ỹ ) = Y

∣∣∣∣
i(L)

[X,Y ](p) = [Di(X̃), Di(Ỹ )](p) = (Di[X̃, Ỹ ])(p) ∈ Ep

The second equlity is by the following claim:

Claim 9.2. f :M → N is a smooth map, X,Y ∈ X(M).

Dpf([X,Y ](p)) = [Df(X), Df(Y )](f(p))

Proof. Let h ∈ C∞(N).

(LDf(X)h)(q) = Dqh(Dpf(X(p)))

= Dp(h ◦ f)(X(p))

= (LX(h ◦ f))(p)

Note that q = f(p). So

(LDf(X)h) ◦ f = LX(h ◦ f)

Then
L[Df(X),Df(Y )]h = LDf(X)LDf(Y )h− LDf(Y )LDf(X)h

= LX((LDf(Y )h) ◦ f)− LY ((LDf(X)h) ◦ f)
= LXLY (h ◦ f)− LY LX(h ◦ f)
= L[X,Y ](h ◦ f)
= LDf [X,Y ]h

Thus,
[Df(X), Df(Y )] = Df [X,Y ]

(2)⇒(3): Proving (3) is a local problem, so we may work on an open neighbor-
hood U of 0 in Rn.

Step 1: Consider the projection π : U → Rk

(x1, . . . , xn) 7→ (x1, . . . , xk)

Suppose that D0π

∣∣∣∣
E0

is an isomorphism. Then we may assume Dpπ

∣∣∣∣
Ep

is an

isomorphism for all p ∈ U .
Step 2: After a linear change of coordinates on Rn, we may assume that

D0π

∣∣∣∣
E0

is an isomorphism. By Step 1, the same is then true for all p ∈ U .

Step 3: Let U and π be as above. Fix zi ∈ Γ(E
∣∣
U
), so that

Dπ(zi) =
∂

∂xi
for i ∈ {1, . . . , k}



CHAPTER 9. THE FROBENIUS THEOREM 40

Then z1(p), . . . , zk(p) are a basis of Ep for every p ∈ U . By (2), we have
[zi, zj ] ∈ Γ(E). Then

Dπ[zi, zj ] = [Dπ(zi), Dπ(zj)] =

[
∂

∂xi
,
∂

∂xj

]
= 0

By injectivity of Dπ
∣∣∣∣
E

, we conclude [zi, zj ] = 0.

Step 4: Since zi pairwise commute, there are local coordinates, s.t. zi =
∂

∂xi
.

9.3 Foliation
Definition 9.3. Let M be a smooth n-dimensional manifold, 0 ⩽ k ⩽ n.
A k-dimensional foliation F of M is a decomposition of M into k-dimensional
injectively immersed manifolds which is locally trivial in the following sense:
∀p ∈ M , ∃ open neighborhood U and a diffeomorphism ϕ : U → Rn, s.t. the
intersections of injective immersed manifolds making up F with U are mapped
by ϕ to the slices

xk+1 = ck+1, . . . , xn = cn

A subbundle E ⊂ TM is integrable if and only if E consists of vectors
tangent to the leaves of a foliation, this is true if and only if Γ(E) is closed
under [ , ].
Example 9.1. Every rank 1 subbundle E ⊂ TM is integrable to a 1-dimensional
foliation.
Example 9.2. k = 2, locally E = span{x, y}. Then

Integrate x to get 1-dimensional integral submanifold for E.
Integrate y to get 1-dimensional integral submanifold for E.

Example 9.3. M = T 2 = S1 × S1 = = ([0, 1]× [0, 1])/ ∼

E ⊂ TT 2 spanned by a ∂
∂x

+ b
∂

∂y
= X

If a/b ∈ Q, then all flowlines of X are periodic, so = S1.
If a/b /∈ Q, then all flowlines of X are ∼= R, and are dense in T 2.
Let Ti = S1 ×D2, then S3 = R2 ∪ {∞} = T1 ∪ T2.

Reeb Foliation of S3
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Differential Forms and
Multilinear Algebra

10.1 Differential Forms
M is a smooth manifold, dimM = n.

Definition 10.1. A differential form of degree k, or a k-form, is a C∞(M)-
multilinear map

ω : X(M)× · · · × X(M) → C∞(M)

(X1, . . . , Xk) 7→ ω(X1, . . . , Xk)

with the property

ω(Xσ(1), . . . , Xσ(k)) = sign(σ) · ω(X1, . . . , Xk)

sign(σ) = ±1 according to whether the number of transpositions in σ is even or
odd.

Lemma 10.1. ω(X1, . . . , Xk)(p) depends on Xi only through Xi(p) ⇒ ω(p) :
TpM × TpM → R is k-multilinear.

ω(p)(Xσ(1)(p), . . . , Xσ(k)(p)) = sign(σ)ω(p)(X1(p), . . . , Xk(p)), ω ∈ Γ(Λk)

Proof. We only have to prove the Lemma for i = 1.
Step 1: Suppose there is an open set U ⊂M , s.t. X1

∣∣∣∣
U

≡ 0. Let ρ :M → R

be a smooth bump function with ρ(p) = 1 for a fixed p ∈ U and supp(ρ) ⊂ U .
Then ρ ·X1 ≡ 0.

0 = ω(ρX1, X2, . . . , Xk) = ρ · ω(X1, . . . , Xk) ⇒ ω(X1, . . . , Xk)(p) = 0

Step 2: Suppose p ∈M is such that X1(p) = 0. Using a chart (U,ϕ) around
p, we can write

X1

∣∣∣∣
U

=

n∑
j=1

fj
∂

∂xj
, fj ∈ C∞(U)

41
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Let ρ : U → R be a C∞ bump function with ρ

∣∣∣∣
V

≡ 1 for V ⊂ U a smalleer

neighborhood of p and supp(ρ) ⊂ U . Then ρ · fj ∈ C∞(M) and ρ · fj
∣∣∣∣
V

≡ fj .

Similarly, Yi = ρ · ∂

∂xj
∈ X(M) and Yj

∣∣∣∣
V

≡ ∂

∂xj
. Then Y :=

n∑
j=1

(ρ · fj) · Yj ∈

X(M) has the property that Y
∣∣∣∣
V

≡ X1

∣∣∣∣
V

⇒ (X1 − Y )

∣∣∣∣
V

≡ 0, so by Step 1:

ω(X1 − Y,X2, . . . , Xk)(p) = 0

0 = ω(X1 − Y,X2, . . . , Xk)(p) = ω(X1, . . . , Xk)(p)− ω(Y,X2, . . . , Xk)(p)

ω(Y,X2, . . . , Xk)(p) =

n∑
j=1

(ρ · fj)(p)︸ ︷︷ ︸
=0, because fj(p)=0 since X1(p)=0

ω(Yj , X2, . . . , Xk)(p) = 0

⇒ ω(X1, . . . , Xk)(p) = 0 wherever X1(p) = 0

Step 3: Suppose X1, X
′
1 ∈ X(M) with X1(p) = X ′

1(p). Then applying Step
2 to X1 −X ′

1, we see

ω(X1, . . . , Xk)(p) = ω(X ′
1, X2, . . . , Xk)(p)

10.2 Excursion into Multilinear Algebra
Let V,W be (finite-dimensional) R-vector spaces.

Definition 10.2. A tensor product for V and W is a bilinear map

ϕ : V ×W T

Z

f
∃!f linear

(Universal property of tensor product), where T is a R-vector space, such that
every bilinear map f : V ×W → Z factorizes uniquely through ϕ.

Theorem 10.2. A tensor product exists, and is unique up to unique isomor-
phism.

Proof. Uniqueness: Suppose ϕi : V ×W → Ti, i = 1, 2 are two tensor products
satisfying the universal property.

V ×W T1

T2

φ1

φ2
φ2 linear

V ×W T1

T2

φ2

φ1
φ1 linear

ϕ2 = ϕ2 ◦ ϕ1

= ϕ2 ◦ ϕ1 ◦ ϕ2

and similarly
ϕ1 = ϕ1 ◦ ϕ2

= ϕ1 ◦ ϕ2 ◦ ϕ1
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V ×W T2

T2

φ2

φ2
φ2◦φ1=IdT2

Similarly ϕ1 ◦ ϕ2 = IdT1

⇒ the ϕi are isomorphisms inverse to each others.
These are the only choices of isomorphisms between the Ti, which make the
triangle commute.

Existence: Let X be the R-vector space with basis V ×W . Let Y ⊂ X be
the subspace generated by elements in X of the form:

(av1 + bv2, w)− a(v1, w)− b(v2, w) and (v, aw1 + bw2)− a(v, w1)− b(v, w2)

where T := X/Y is the quotient vector space. The coset of (v, w) will be denoted
v ⊗ w. Define ϕ : V ×W → T by

(v, w) 7→ v ⊗ w

Claim 10.3. (T, ϕ) is a tensor porduct of V and W .

Proof. 1. ϕ is bilinear

ϕ(av1 + bv2, w) = (av1 + bv2)⊗ w

= av1 ⊗ w + av2 ⊗ w

So ϕ is linear in the first argument. Similar argument for the second argument.
2. Given a bilinear f : V × W → Z, define f(v ⊗ w) := f(v, w), and

extended linearly to T . Then f : T → Z is a well-defined linear map. Moreover,
f ◦ ϕ(v, w) = f(v ⊗ w) = f(v, w), so f = f ◦ ϕ.

3. Given f , the f in 2 is unique. Suppose g : T → Z is any linear map with
f = g ◦ ϕ. Then

f(v ⊗ w) = f(v, w) = g(v ⊗ w)

Since the v ⊗ w span T , we conclude f ≡ g.

From now on, we write T = V ⊗W and ϕ(v, w) = v ⊗ w for the unique
tensor product of V and W .

Suppose v1, . . . , vn ∈ V and w1, . . . , wm ∈W are basis of V respectively W .
Then vi ⊗ wj , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} is a basis of V ⊗W .

dim(V ⊗W ) = dimV · dimW

V ×W V ⊗W

R

φ

f

f

The space of bilinear maps from V ×W to R is (V ⊗W )∗.
If V1, . . . , Vk are finite-dimensional R-vector spaces, there is a unique tensor

product V1 ⊗ · · · ⊗ Vk which has the universal property for k-linear maps:
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V1 × · · · × Vk V1 ⊗ · · · ⊗ Vk

Z

φ

f

∃!f linear

For a single R-vector space V denoted

T k(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

Let T 0(V ) = R and T 1(V ) = V , then the tensor algebra of V is

T (V ) = T ∗(V ) =

∞⊕
k=0

T k(V )

The multiplication in this algebra is induced by

v1⊗v2⊗· · ·⊗vk ·w1⊗w2⊗· · ·⊗wl = v1⊗· · ·⊗vk⊗w1⊗· · ·⊗wl, vi, wj ∈ V

Then · is written ⊗ and T k(V )× T l(V )
⊗−→ T k+1(V ).

10.3 Exterior Algebra

V × · · · × V T k(V )

Z

f

∃!f

, where k is multilinear.

Consider only skew-symmetric f , so that

f(vσ(1), . . . , vσ(k)) = sign(σ) · f(v1, . . . , vk)

V × · · · × V Λk(V )

Z

φ

f

∃!f

T ∗(V ) =
⊕
k⩾0

T k(V )

⊂

A the ideal generated by v1 ⊗ v2 + v2 ⊗ v1, vi ∈ V the “alternating ideal”

=⊕
k⩾0

Ak where Ak = A ∩ T k(V )

A0 = 0

A1 = 0

A2 = span{v1 ⊗ v2 + v2 ⊗ v1 | vi ∈ V }

⊂

T 2(V ) = span{v1 ⊗ v2 | vi ∈ V }

Ak = span
⋃

p+q+2=k

T q(V )⊗A2 ⊗ T p(V )
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Definition 10.3. T ∗(V )/A := Λ∗(V ) is the exterior algebra of V .

Suppose f is skew-symmetric. Then

f(v1, v2) = −f(v2, v1)

⇒ f(v1 ⊗ v2) = −f(v2 ⊗ v1)

⇔ f(v1 ⊗ v2 + v2 ⊗ v1) = 0

Lemma 10.4. A k-multilinear map f : V × · · · × V → Z is skew-symmetric if
and only if f

∣∣∣∣
Ak

≡ 0.

f is k-multilinear and skew-symmetric

V × · · · × V T k(V ) T k(V )/Ak = Λk(V )

Z

f

φ

f

π

f

Λ(V ) =
⊕
k⩾0

Λk(V )

Let dimV = n, and v1, . . . , vn is a basis of V . Then vi1 ⊗ · · · ⊗ vik , ij ∈
{1, . . . , n} form a basis for T k(V ). And dimT k(V ) = nk.

[vσ(1) ⊗ · · · ⊗ vσ(k)] = sign(σ)[v1 ⊗ · · · ⊗ vk] in Λk(V )

If we have two repeating indices, we are going to have zero, because v1 ⊗ v1 +

����v1 ⊗ v1 ∈ A2. So if you have two indices which are the same, then the cor-
responding elements in the exterior algebra is zero. For those the indices are
different, then you can use this equation to just put them in a sending order,
whatever their order have here, up to sign, it is just this. Then we are done.

[vi1 ⊗ vi2 ⊗ · · · ⊗ vik ] , 1 ⩽ i1 < i2 < · · · ⩽ n form a basis for Λk(V )

=

vi1 ∧ vi2 ∧ · · · ∧ vik

So we think of the exterior algebra as the quotient of the tensor algebra, we don’t
usually write elements in this quotient as cosets this bracket, we just write like
this. It says

dimΛk(C) =

(
n
k

)
That specify all the spaces. So in particular,

Λk(V ) = 0 if k > n

So this graded algebra actually stops after the degree n. That was not the
case for the tensor. The tensor algebra has arbitrary many elements and tesor
algebra has a vector space over R is infinite dimension. But since the spaces
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vanish in the degree larger than n for the exterior algebra and these space are
finite dimensional, the whole exterior algebra is finite dimension. So

dimΛ∗(V ) =
∑
k=0

(
n
k

)
= (1 + 1)n = 2n

Let us consider something about the induced map of tensor products or
exterior products. This is kind of functoriality properties of this instructions.
First of all, suppose fi : Vi →Wi are linear maps.

V1 ⊗ V2
f−→W1 ⊗W2 is a linear map

v1 ⊗ v2 7→ f1(w1)⊗ f2(v2)

where v1⊗v2 are called decomposable elements of V1⊗V2. What we do is we’ve
constructed the tensor product. It is obviously spaned by these decomposable
elements. Then the general element is not decomposable, but it is a linear
combination of decomposable elements. Because the decomposable once are
spanning set, you can make of this definition. Same thing works for the exterior
algebra, if V1 is the same as V2. Using these constructions, every linear map
f : V →W induces an algebra homomorphism

T (f) : T ∗(V ) → T ∗(W )

v1 ⊗ · · · ⊗ vk 7→ f(v1)⊗ · · · f(vk)

Similarly,

Λ(f) : Λ∗(V ) → Λ∗(W ) is an algebra homomorphism
v1 ∧ · · · ∧ vk 7→ f(v1) ∧ · · · ∧ f(vk)

What has this happened to do with determinant? Let dimV = n and
f : V → V is linear, then

Λn(f) : Λn(V ) → Λn(V )

where Λn(V ) is 1-dimensional.

Claim 10.5. Λn(f) is multiplication by det(f).

V × · · · × V Λk(V )

R

f

f

where f is k-linear nad skew-symmetric. The space of k-linear skew-symmetric
maps f : V × · · ·V → R is naturally (Λk(V ))∗ = Λk(V ∗). Then λ1 ∧ · · · ∧ λk ∈
Λk(V ∗) acts as a linear map Λk(V ) → R by (λ1 ∧ · · · ∧ λk)(v1 ∧ · · · ∧ vk) =∑
σ
sign(σ)λ1(vσ(1)) · · ·λk(vσ(k)) ∈ R. For instance,

k = 2 (λ1 ∧ λ2)(v1 ∧ v2) = λ1(v1)λ2(v2)− λ1(v2)λ2(v1)
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10.4 Multilinear Vector Bundle Theory
If ω : X(M) × · · · × X(M) → C∞(M) is a differential form of degree k on M ,
then

ω(p) : TpM × · · · × TpM → R

is well-defined, k-linear and skew-symmetric.

⇒ ω(p) ∈ ΛkT ∗
pM

Instead of saying for ΛkT ∗M , more generally, that in fact the multilinear con-
struction we have done are extended from vector spaces to vector spaces. Vector
space is a vector bundle over the points. To replace the points by arbitrary man-
ifold, essentially, everything was the same. As an example, we will define tensor
for vector bundles. Let E πE−−→ M , F πF−−→ M be two smooth vector bundles of
rank k and l, respectively. We can find an open covering {Ui | i ∈ I} of M , so
that on each Ui, both E and F are trivial.

ϕi : π
−1
E (Ui) → Ui × Rk

ψi : π
−1
F (Ui) → Ui × Rl

where these are local trivialization. Now the question is do this local definitions
fit together properly, you have something is well-defined independently to your
local trivialization? Ui × (Rk ⊗ Rl) represents E ⊗ F over Ui. If Ui ∩ Uj 6= ∅,
then

ϕj ◦ ϕ−1
i : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk

(p, v) 7→ (p, gij(p) · v)

where gij : Ui ∩ Uj → GLk(R). Similarly,

ψj ◦ ψ−1
i (p, v) = (p, fji(p) · v)

for smooth fij : Ui∩Uj → GLl(R). Consider gji ⊗ fji : Ui ∩ Uj → GLk·l(R)
p 7→ gji(p)⊗ fji(p)

by
(gji(p)⊗ fji(p))(v ⊗ w) = gji(p)(v)⊗ fji(p)(w)

where g∗∗ ⊗ f∗∗ is a cocycle, and E ⊗ F is the corresponding vector bundle of
rank k · l, trivial over each Ui. This is how using cocycles to define make precise
that the vector bundle E⊗F is the fibrewise tensor product of the fibres E and
F . Fibres of E and F form the vector spaces and over every point is just take
the tensor product of the fibre.

Now we want to extend this and we are not doing with for the tensor algebra,
because tensor algebra is infinite dimension and we don’t want to speak of
infinite rank vector bundles.

Given a single vector bundle E →M , we can use this construction to define
Tm(E) →M for every m ⩾ 0. This descends to a definition of Λm(E) →M by
taking the quotient bundle Tm(E)/Am.

For example, let E, F be vector bundles over M , and f : E → F a homo-
morphism of vector bundles. Then

Tm(f) : Tm(E) → Tm(F )

Λm(f) : Λm(E) → Λm(F )



CHAPTER 10. DIFFERENTIAL FORMS AND MULTILINEAR ALGEBRA48

are also homomorphism of vector bundles. I said the differential forms has a
value a the point which is an element of ΛkT ∗M . Now we have constructed this
vector bundle and apply this to the cotangent bundle.

f∗E E

M N

π

f

f∗Λm(E) = Λm(f∗E)

We have now defined ΛkT ∗M , and Γ(ΛkT ∗M) are differential forms of degree
k on M .

Now we want to apply the above discussion to differential forms. Suppose
f : M → N is a smooth map. Then f∗(ΛkT ∗N) is a vector bundle over M . If
ω ∈ Γ(ΛkT ∗N) = Ωk(N) is a k-form on N , then we define f∗ω as follows

(f∗ω)(X1, . . . , Xk)(p) = ω(f(p))(Dpf(X1), . . . , Dpf(Xk))

This is a k-form on M .

TM f∗TM TN

M N

Df

f

(Df)∗ : (f∗TN)∗︸ ︷︷ ︸
=f∗T∗N

→ T ∗N

Λk((Df)∗) : Λkf∗T ∗N︸ ︷︷ ︸
=f∗ΛkT∗N

→ ΛkT ∗M

Now we can say the following:

(f∗(ω))(p) = Λk(Dpf)
∗ω(f(p))

where the derivative of p at f is a linear map

Dpf : TpM → Tf(p)N

(Dpf)
∗ : T ∗

f(p)N → T ∗
pM

Here we doing this not from the cotangent space, but on the exterior products.
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Integration of Forms

11.1 Orientation
To discuss the application of the smooth linear algebra of vector bundles, we
have the following proposition.

Proposition 11.1. Suppose E π−→ M is a smooth vector bundle of rank k.
Then the following are equivalent:

(1) E is orientable.

(2) ΛkE is orientable.

(3) ΛkE is trivial.

Proof. ΛkE has rank
(
k
k

)
= 1.

(2)⇔(3): we proved before for arbitrary rank 1 bundle.
(1)⇔(2): By definition, E is orientable if and only if ∃ system of local

trivializations (Ui, ϕi),
ϕi : π

−1(Ui) → Ui × Rk

for which all ϕj ◦ϕ−1
i are orientation-preserving on {p}×Rk for all p ∈ Ui ∩Uj .

ϕj ◦ ϕ−1
i : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk

(p, v) 7→ (p, gji(p) · v)

where gji : Ui ∩ Uj → GLk(R). So all gji takes value in GL+
k (R) ⊂ GLk(R) ⇔

det gji(p) > 0 for all p ∈ Ui∩Uj . (Ui,Λkϕi) form a system of local trivializations
for ΛkE, whose transition maps are det gji(p). So if (1) holds, then (2) follows.

For the converse, choose an open covering of M by Ui such that both E and
ΛkE are trivial over all Ui.

Proof. Over each Ui, we have trivializations

ϕi : π
−1(Ui) → Ui × Rk

ψi : (π
′)−1(Ui) → Ui × Rk

π : E →M

π′ : ΛkE →M

49
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If (2) holds, we may choose the ψi, so that all ψj ◦ψ−1
i are orientable-preserving

on R.
Ep

φi−→ {p} × Rk

ΛkEp
Λkφi−−−→ {p} × R

ΛkEp
ψi−→ {p} × R

By composing ϕi with a reflection in a hyperplane in Rk, we may assume that
Λkϕi and ψi define the same orientation on ΛkEp.

Since the ψi have orientation-preserving transition map by assumption, the
same is now true for the ϕi, so (2)⇒(1).

Remark. E∗ is (non-canonically) isomorphic to E.
If 〈 , 〉 is a metric on E, then

f : E → E∗

v 7→ 〈v,−〉

is a bundle homomorphism which is an isomorphism.

Definition 11.1. A smooth manifold M is orientable if TM → M is an
orientable vector bundle.

Definition 11.2. A volume form on M is a differential form ω ∈ Γ(ΛnT ∗M)
where n = dimM , s.t. ω(p) 6= 0, ∀p ∈M .

Corollary 11.2. For a smooth n-dimensional manifold, the following are equiv-
alent:

(1) M is orientable.

(2) ΛnTM is orientable.

(3) ΛnTM is trivial.

(4) M admits a volume form.

Let Ωk(M) = Γ(ΛkT ∗M). When k = 0, Ω0(M) = Γ(M ×R) = C∞(M). We
define

d : C∞(M) → Ωk(M)

f 7→ df

where
(df)(p) : TpM → R

x 7→ Dpf(x)

Lemma 11.3. Let ϕ : M → N be a differetiable map, f ∈ C∞(N). Then
ϕ∗(f) = f ◦ ϕ and ϕ∗(df) = d(ϕ∗(f)). So ϕ∗ ◦ d = d ◦ ϕ∗.
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Proof. Let X ∈ TpM .

(ϕ∗df)(X) = df(Dpϕ(X))

= (Dφ(p)f)(Dpϕ(X))

= Dp(f ◦ ϕ)(X)

= Dp(ϕ
∗(f))(X)

= d(ϕ∗(f))(X)

Let U ⊂ Rn be open, f ∈ C∞.

df(X) = Df(X)

At every point p ∈ U , ∂

∂x1
, . . . ,

∂

∂xn
form a basis of TpU

X =

n∑
i=1

λi
∂

∂xi

Let dx1, . . . , dxn be the dual basis of T ∗
pM .

Claim 11.4. df =
n∑
i=1

∂f

∂xi
dxi.

Proof. For all X, we must have df(X) = Df(X). Take X =
∂

∂xi
. Then

df

(
∂

∂xi

)
= Df

(
∂

∂xi

)
=

∂f

∂xi
. n∑

j=1

∂f

∂xj
dxj

( ∂

∂xi

)
=

n∑
j=1

∂f

∂xj
dxj

(
∂

∂xi

)
=

∂f

∂xi

ω =
∑

1⩽i1<···<ik⩽n
fi1,...,ik dxi1 ∧ · · · ∧ dxik ∈ Ωk(U)

Define

dω =
∑

1⩽i1<···<ik⩽n
(dfi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik ∈ Ωk+1(U)

Claim 11.5. d2 ≡ 0, so d(dω) = 0.
Proof.

d(dω) = d
∑
ij

(
n∑
α=1

∂fij
∂xα

dxα

)
∧ dxi1 ∧ · · · ∧ dxik

=
∑
ij

n∑
α,β=1

∂

∂xβ

(
∂fij
∂xα

)
dxβ ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑
ij

∑
α<β�����������(

∂fij
∂xβ∂xα

−
∂fij

∂xα∂xβ

)
dxβ ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik = 0
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Lemma 11.6. Let ϕ : M → N be a differentiable map, ω ∈ Ωk(N). Let
M,N ⊂ Rn be open subsets. Then dϕ∗ω = ϕ∗dω.

Proof. ω =
∑
ij

fi1,...,ikdyi1 ∧ · · · ∧ dyik .

dϕ∗ω = d
∑
ij

ϕ∗(fi1,...,ik)ϕ
∗(dyi1) ∧ · · · ∧ ϕ∗(dyik)

= d
∑
ij

ϕ∗(fi1,...,ik)d(ϕ
∗yi1) ∧ · · · ∧ d(ϕ∗yik)

=
∑
ij

dϕ∗(fi1,...,ik) ∧ d(ϕ∗yi1) ∧ · · · ∧ d(ϕ∗yik)

= ϕ∗

∑
ij

dfi1,...,ik ∧ dyi1 ∧ · · · ∧ dyik

 = ϕ∗dω

Claim 11.7. If ω ∈ Ωk(U) and η ∈ Ωl(U), then d(ω∧η) = dω∧η+(−1)kω∧(dη).

If k = 0, then ω = f ∈ C∞(U). This formula becomes

d(fη) = df ∧ η + fdη

11.2 Exterior Derivative
Definition 11.3. An exterior derivative on a smooth manifold M is a R-
linear map d : Ωk(M) → Ωk+1(M) for all k with the following properties:

(1) If k = 0, then df(X) = Df(X).

(2) d(ω ∧ η) = dω ∧ η + (−1)degωω ∧ dη.

(3) d2 = 0.

(4) d commutes with pullback by differentiable maps.

(5) If U ⊂M open, then (dω)

∣∣∣∣
U

depends only on ω
∣∣∣∣
U

.

Theorem 11.8. There exists a unique exterior derivative d on smooth mani-
folds satisfying (1)-(5).

Proof. First uniqueness, then existence. (“0-form wedge a k-form is just 0-form
(=functions) times that k-form.”)

Uniqueness: On 0-forms (=functions), d is determined by (1). Let ω ∈ Ωk,

k > 0. Then by (5), we need only consider ω
∣∣∣∣
U

for charts (U,ϕ). Then

ω

∣∣∣∣
U

= ϕ∗
∑

i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxik
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(dω)

∣∣∣∣
U

(5)
=== d

(
ω

∣∣∣∣
U

)
= d

(
ϕ∗

∑
i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxik

)
(4)
=== ϕ∗d

( ∑
i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxik

)
=

∑
i1<···<ik

ϕ∗(d(fi1,...,ik dxi1 ∧ · · · ∧ dxik))

(2)
===

∑
i1<···<ik

ϕ∗((dfi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik) + fi1,...,ikd(dxi1 ∧ · · · ∧ dxik))

(2)+(3)
======

∑
i1<···<ik

ϕ∗ (dfi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik)︸ ︷︷ ︸
uniquely determined by (1)

Existence: Let {Ui | i ∈ I} be an open covering of M by domains of charts.
Let ρi be a subordinate partition of unity.

ω = 1 · ω =
∑
i∈I

ρiω︸︷︷︸
=:ωi

=
∑
i∈I

ωi

where supp(ωi) ⊂ Ui. Define dω =
∑
i∈I

dωi, with dωi defined as follows: if

ωi = ϕ∗
i

( ∑
i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxik

)

where it extended by 0 outside of Ui, then

dωi = ϕ∗
i

( ∑
i1<···<ik

dfi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik

)

where dfi1,...,ik is defined by (1).
Well-definess: Suppose α ∈ Ωk(M), s.t. supp(α) ⊂ Ui ∩ Uj . Then ϕ∗

i β =
α = ϕ∗

jγ. We want to define dα as ϕ∗
i dβ, so we need to check ϕ∗

i dβ = ϕ∗
jdγ.

γ = (ϕ−1
j )∗α = (ϕ−1

j )∗ϕ∗
i β = (ϕi ◦ ϕ−1

j )∗β

dγ = d(ϕi ◦ ϕ−1
j )∗β = (ϕi ◦ ϕ−1

j )∗dβ

Therefore,
ϕ∗
i dβ = ϕ∗

jdγ

Lemma 11.9. If α ∈ Ω1(M), then

dα(X,Y ) = LX(α(Y ))− LY (α(X))− α([X,Y ])

Proof. It is enough to check the formula for α = f · dg, where f, g ∈ C∞(M).

dα = df ∧ dg
dα(X,Y ) = df ∧ dg(X,Y ) = df(X)dg(Y )− df(Y )dg(X)

= LXfLY g − LY fLXg
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LX(α(Y ))− LY (α(X))− α([X,Y ])

= LX(fdg(X))− LY (fdg(X))− fdg([X,Y ])

= LX(fLY (g))− LY (fLXg)− fdg([X,Y ])

= (LXf)(LY g) + fLXLY g − (LY f)(LXg)− fLY LXg − fdg([X,Y ])

= (LXf)(LY g)− (LY f)(LXg) +
((((((((((((((
f(LXLY g − LY LXg − L[X,Y ]g)

Definition 11.4. For X ∈ X(M), let ϕt be the flow. Then for ω ∈ Ωk(M),
define the Lie derivative of ω as

LXω =
d

dt
ϕ∗
tω

∣∣∣∣
t=0

Take α ∈ Ω1(M).

(LXα)(Y )(p) =

(
d

dt
ϕ∗
tα

∣∣∣∣
t=0

(p)

)
(Y (p))

= lim
t→0

α(ϕt(p))(Dpϕt(Y (p))− α(p)(Y (p)))

t

= lim
t→0

α(ϕt(p))(Dpϕt(Y (p))− Y (ϕt(p)) + α(ϕt(p))(Y (ϕt(p)))− α(p)(Y (p)))

t

= α(L−XY )(p) + LX(α(Y ))(p)

= LX(α(Y ))(p)− α([X,Y ])(p)

We have proved (LXα)(Y ) = LX(α(Y ))− α([X,Y ])

=�����LX(α(Y )) + dα(X,Y )((((((−LX(α(Y )) + LY (α(X))

⇒ dα(X,Y ) = (LXα)(Y )− LY (α(X))

Definition 11.5. For X ∈ X(M), define the contraction with X

iX : Ωk(M) → Ωk−1(M)

ω 7→ ω(X, . . . ,Xk)

by
iXω(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk)

We have iX ≡ 0 by skew-symmetry.
Moreover, iX(ω∧η) = (iXω)∧η+(−1)degωω∧iXη. e.g. if degω = deg η = 1,

then
(iX(ω ∧ η))(Y ) = (ω ∧ η)(X,Y )

= ω(X)η(Y )− ω(Y )η(X)

= ((iXω) ∧ η)(Y ) + (−1)degω(ω ∧ iXη)(Y )

In general, η ∧ ω = (−1)deg η·degωω ∧ η.

Theorem 11.10 (Cartan Formula). On Ωk(M), we have LX = d ◦ iX + iX ◦ d.
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Proof. For k = 0, the formula reduces to LX = iX ◦d. Apply LX to f ∈ C∞(M):
LXf = iXdf = df(X) true! For k = 1, let α ∈ Ω1(M), then

(LXα)(Y ) = dα(X,Y ) + LY (α(X))

= dα(X,Y ) + d(α(X))(Y )

= ((iX ◦ d)α)(Y ) + ((d ◦ iX)α)(Y )

⇒ LX = iXd+ diX on 1-forms

In general, Cartan formula is local and R-linear, so it is enough to check it on
ω = α1 ∧ · · · ∧ αk, where αi ∈ Ω1(M).

LXω =

k∑
j=1

α1 ∧ · · · ∧ LXαj ∧ · · · ∧ αk

=

k∑
j=1

(α1 ∧ · · · ∧ iXdαj ∧ · · · ∧ αk + α1 ∧ · · · ∧ dαi(X) ∧ · · · ∧ αk)

!
= iXdω + d(iXω)

iXω =

k∑
j=1

(−1)i−1α1 ∧ · · · ∧ αj(X) ∧ · · · ∧ αk

d (iXω) =

k∑
j=1

(−1)j−1d (αj(X)) ∧ α1 ∧ · · · ∧ α̂j ∧ · · · ∧ αk

+

k∑
j=1

(−1)j−1αj(X)d (α1 ∧ · · · ∧ α̂j ∧ · · · ∧ αk)

dω =

k∑
j=1

(−1)j−1α1 ∧ · · · ∧ dαj ∧ · · · ∧ αk.

iXdω = iX

k∑
j=1

α1 ∧ · · · ∧ dαj ∧ · · · ∧ αk

where the hat (α̂j) means that the jth factor is omitted.

11.3 Manifolds with Boundary
We look at the half space

Hn = {x = (x1, . . . , xn) ∈ Rn | xn ⩾ 0} ⊂ Rn

The boundary is

∂Hn = {x = (x1, . . . , xn) ∈ Rn | xn = 0} = Rn−1 ⊂ Hn

Then the interior is

intHn = {x = (x1, . . . , xn) ∈ Rn | xn > 0} ⊂
open

Rn
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Definition 11.6. A differentiable manifold with boundary is a topological space
M which is Hausdorff and has a countable basis for its topology and has an atlas
(Ui, ϕi), i ∈ I, where Ui ⊂M are open, M =

⋃
i∈I

Ui,

ϕi : Ui → Hn are homeomorphisms onto their images

and, whenever Ui ∩ Uj 6= ∅,

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a diffeomorphism

If U ⊂ Hn is open, a map f : U → N is differentiable if it admits a differen-
tiable extension to open set in Rn.

M manifold with boundary

∂M := {p ∈M | ∃(Ui, ϕi), s.t. ϕi(p) ∈ ∂Hn}
intM := {p ∈M | ∃(Ui, ϕi), s.t. ϕi(p) ∈ intHn}

Lemma 11.11. ∂M , intM are well-defined, M = ∂M ∪ intM .
Proof. Suppose p ∈ Ui, and ϕi(p) ⊂ intHn. If p ∈ Uj , then ϕj ◦ ϕ−1

i maps
ϕi(Ui ∩Uj) diffeomorphically to ϕj(Ui ∩Uj). If this touches ∂Hn, shrink Uj , to
get an open neighborhood of p in M . which maps to intM .

Considering Ui∩intM and restricting ϕi, we obtain a smooth atlas for intM ,
showing that intM is an n-dimensional manifold in the usual sense.

If ∂M 6= ∅, then considering Ui∩∂M and restricting ϕi, we obtain a smooth
atlas for ∂M , showing that ∂M is a (n−1)-dimensional smooth manifold in the
usual sense.

{manifolds} ⊂ {manifolds with ∂}

(p, i, v), p ∈M
i ∈ I, s.t. p ∈ Ui
v ∈ Rn = Tφi(p)Rn

x

y
TyHn = Rn

The usual definition of TM →W works for manifolds with boundary.

∂M

intM
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Example 11.1.

(0) M = Hn, ∂M = ∂Hn.

(1) Bε(p) = {x ∈ Rn | d(x, p) ⩽ ε}, ∂Bε(p) = Sn−1.

(2)
M manifold with boundary ∂M
Nmanifold (without boundary)

}
M ×N is a manifold with boundary

∂(M ×N) = ∂M ×N

1⃝ M is orientable if TM →M is an orientable vector bundle.

2⃝ M is orientable if there is an atlas (Ui, ϕi), i ∈ I, s.t. all ϕj ◦ ϕ−1
i are

orientable-preserving.

1⃝⇔ 2⃝: Both definitions also apply to manifolds with boundary, and are still
equivalent.

Lemma 11.12. If M is an orientable manifold with boundary, then ∂M is an
orientable manifold (in the usual sense).

Proof. M is orientable ⇒ ∃ atlas, s.t. all ϕj ◦ ϕ−1
i are orientable-preserving.

Suppose p ∈ ∂M , and p ∈ Ui ∩ Uj .

y1, . . . , yn x1, . . . , xn

ϕ = ϕj ◦ ϕ−1
i

xk = ϕk(y1, . . . , yn)

Dφi(p)(ϕ) =

(
∂ϕk
∂yl

)

=


∂ϕk
∂yl

, k, l ⩽ n− 1

∗
...
...
∗

0 · · · · · · 0
∂ϕn
∂yn


where ∂ϕn

∂yn
> 0. Since Dφi(p)ϕ is orientation-preserving, the restriction ϕ

∣∣∣∣
∂H

is

also orientation-preserving.

Let x1, . . . , xn be the linear coordinates on Rn, ∂

∂x1
, . . . ,

∂

∂xn
is an oriented

basis for Rn = T0Rn. We want to choose a basis v1, . . . , vn−1 for Rn−1 ⊂ Rn,
so that − ∂

∂xn
, v1, . . . , vn−1 is positively oriented in Rn, i.e. it defines the same



CHAPTER 11. INTEGRATION OF FORMS 58

orientation as ∂

∂x1
, . . . ,

∂

∂xn
.

v1 = (−1)n
∂

∂x1

v2 =
∂

∂x2
...

vn−1 =
∂

∂xn−1

Definition 11.7. If M is oriented, so that ∂

∂x1
, . . . ,

∂

∂xn
give the orientation

in a chart, then v1, . . . , vn−1 define an orientation for ∂M , called the induced
orientation on the boundary.

Example 11.2. M :=([0, 1]× [0, 1])/ ∼
(0, t) ∼ (1, 1− t)

is a manifold with boundary ∂M ∼= S1.

Remark. If M is orientable, so is intM .

11.4 Stokes’ Theorem
ω ∈ Ωn(Rn) ⇒ ω = f · dx1 ∧ · · · ∧ dxn, f ∈ Ω0(Rn). ω has compact support ⇔
f has compact support.

Assume this is the case. Define∫
ω =

∫
fdx1 · · · dxn

Let ϕ be an orientation-preserving diffeomorphism.∫
ϕ∗ω =

∫
(f ◦ ϕ) det

(
∂ϕi
∂xj

)
dx1 · · · dxj

We get
∫
Rn

ϕ∗ω =
∫
Rn

ω if det
(
∂ϕi
∂xj

)
> 0. So

∫
is well-defined under orientation-

preserving changes of coordinates. Let M be an orientable manifold with fixed
orientation. Let (Ui, ϕi) be a smooth orientated atlas.

Theorem 11.13. There is a well-defined R-linear map (works for M with
boundary by Rn 7→ Hn) ∫

M

: Ωn0 (M) → R

s.t. if supp(ω) ⊂ Ui, then
∫
M

ω =

∫
Rn

(ϕ−1
i )∗ω.
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Proof. Let ω ∈ Ωn0 (M), and let ρi be a smooth partition of unity subordinate
to Ui.

ω = 1 · ω =
∑
i∈I

(ρiω)

If
∫
M

exists and is R-linear, then

∫
M

ω =
∑
i

∫
M

(ρiω) =
∑
i

∫
Rn

(ϕ−1
i )∗(ρiω) (11.1)

This shows that
∫
M

is unique. Use (11.1) to define
∫
M

. This is well-defined,

because all transition maps are orientation preserving, so∫
Rn

(ϕ−1
i )∗(ωi) =

∫
Rn

(ϕ−1
j )∗(ωi)

if supp(ωi) ⊂ Ui ∩ Uj .

Let M be a smooth n-dimensional manifold with boundary.
Theorem 11.14 (Stoke’s Theorem). If i : ∂M ↪→M is the inclusion and M is
orientable, then ∫

M

dω =

∫
∂M

i∗ω ∀ω ∈ Ωn−1
0 (M)

where ∂M carries the orientation induced from M .
Proof. Case 1: M = Hn.

ω =

n∑
i=1

fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where the hat (d̂xi) means that the ith factor is omitted. Since i∗, d,
∫

are R-
linear, we prove stokes theorem for each summand. Without loss of generality,
ω = fdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Subcase 1a: i < n ⇒ i∗ω ≡ 0 ⇒
∫
∂Hn

i∗ω = 0.

∫
Hn

dω =

∫
Hn

n∑
j=1

∂f

∂xj
dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

∫
Hn

∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= (−1)i−1

∫
Hn

∂f

∂xi
dx1 ∧ · · · ∧ dxn

= (−1)i−1

∫
· · ·
∫

∂f

∂xj
dx1 · · · dxn

= (−1)i−1

∫
· · ·
∫ ∫ +∞

−∞

∂f

∂xi
dxidx1 · · · d̂xi · · · dxn = 0
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∫ +∞

−∞

∂f

∂xi
dxi = 0, since f has compact support.

Subcase 1b: i = n, ω = fdx1 ∧ · · · ∧ dxn−1. i∗ω = f

∣∣∣∣
∂Hn

dx1 ∧ · · · ∧ dxn−1.

∫
∂Hn

i∗ω = (−1)n
∫ +∞

−∞
· · ·
∫ +∞

−∞
f

∣∣∣∣
Hn

dx1 · · · dxn−1

where the equality comes from induced orientation, since (−1)ndx1 · · · dxn−1 is
positive oriented. Then∫

Hn

dω =

∫
Hn

∂f

∂xn
dxn ∧ dx1 ∧ · · · ∧ dxn−1

= (−1)n−1

∫
∂f

∂xn
dx1 ∧ · · · ∧ dxn

= (−1)n−1

∫
Hn

∂f

∂xn
dx1 · · · dxn

= (−1)n−1

∫ +∞

−∞
· · ·
∫ +∞

−∞

∫ +∞

0

∂f

∂xn
dxndx1 · · · dxn−1

= (−1)n
∫ +∞

−∞
· · ·
∫ +∞

−∞
f

∣∣∣∣
∂Hn

dx1 · · · dxn−1

where
∫ +∞
0

∂f

∂xn
dxn = f(x1, . . . , xn−1,∞)︸ ︷︷ ︸

=0

−f(x1, . . . , xn−1, 0) = −f
∣∣∣∣
Hn

.

Case 2: M arbitrary, ω ∈ Ωn−1
0 (M), ω =

∑
i

ρiω.∫
M

dω =
∑
i

∫
M

d(ρiω)

=
∑
i

∫
Hn

(ϕ−1
i )∗d(ρiω)

=
∑
i

∫
Hn

d(ϕ−1∗
i (ρiω))

Case 1
======

∑
i

∫
∂Hn

i∗(ϕ−1
i )∗(ρiω)

=
∑
i

∫
∂Hn

(ϕ−1
i )∗i∗(ρiω) =

∫
∂M

i∗ω

Corollary 11.15. If ∂M = ∅, then
∫
M

dω = 0.

Corollary 11.16. If ∂M = ∅, then M does not have a volume form ω, which
is dα, with α ∈ Ωn−1

0 (M).
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Proof.
0 <

∫
M

ω =

∫
M

dα = 0

This leads to a contradiction.

Example 11.3. M = B1(0) ⊂ R2, ∂M = S1, ω = dx ∧ dy = d(xdy). Then

Area(B1(0)) =

∫
M

d(xdy) =

∫
S1

xdy =

∫
S1

cosϕd(sinϕ) =

∫
S1

cos2 ϕdϕ

Since

(sinϕ cosϕ)′ = cos2 ϕ− sin2 ϕ = 2 cos2 ϕ− 1 ⇒ cos2 ϕ =
1

2
+

1

2
(sinϕ cosϕ)′

Thus,

Area(B1(0)) =

∫
S1

1

2
+

1

2

∫
S1

(sinϕ cosϕ)′dϕ =

∫ 2π

0

1

2
dϕ = π



Chapter 12

de Rham Cohomology

H∗
dR(M) =

n⊕
k=0

Hk
dR(M)

Definition 12.1. Hk
c (M) :=

ker(d : Ωk0(M) → Ωk+1
0 (M))

im(d : Ωk−1
0 (M) → Ωk0(M))

the de Rham coho-

mology of M with compact support, where ker(d : Ωk0(M) → Ωk+1
0 (M)) is the

closed form and im(d : Ωk−1
0 (M) → Ωk0(M)) is the exact form.

Example 12.1. H0
c (M) =locally constant functions with compact support. If

M is connected, then

H0
c (M) =

{
R M compact
0 M non-compact

M = R, k = 1

H1
c (R) =

Ω1
c(R)

im(d : Ω0
c(R) → Ω1

c(R))

Ω1
c(R) 3 ω = fdt, f ∈ C∞

0 (R). Before

F (x) =

∫ x

−∞
f(t)dt, ω = dF

But F does not have compact support, if
+∞∫

−∞

f(t)dt = c 6= 0.

If c = 0, then F ∈ Ω0
0(R) and dF = ω, then [ω] = 0 ∈ H1

c (R). If c 6= 0, then
still dF = ω, but F /∈ Ω0

0(R).
Suppose G ∈ C∞

0 (R) and dG = ω. Then d(F − G) = 0. ⇒ F − G = d is
constant, for x� 0: G(x) = d and for x� 0: G(x) = −d+ c.

Since G has compact support ⇒ d = 0 and d = c. This leads to a contra-
diction since c 6= 0.

⇒ ω /∈ im(d : Ω0
0(R) → Ω1

0(R)).
⇒ H1

c (R) 6= 0.
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Theorem 12.1. If M is a smooth n-dimensional oriented manifold without
boundary, then ∫

M

: Hn
c (M) → R

is well-defined and surjective.

Proof. If [ω′] = [ω] ∈ Hn
c (M), then ω′ = ω + dα, with α ∈ Ωn−1

0 (M).∫
M

ω′ =

∫
M

ω +

∫
M

dα
Stokes
======

∫
M

ω +

∫
∂M

α =

∫
M

ω

Let ρ ⩾ 0 be a bump function, with support in a chart: ω = ρdx1 ∧ · · · ∧ dxn.∫
M

ω =

∫
U

ρdx1 ∧ · · · ∧ dxn =

∫ +∞

−∞
· · ·
∫ +∞

−∞
ρdx1 · · · dxn > 0

By linearity, surjective follows.

Example 12.2. M = R ∫
R

: H1
c (R) → R

Claim 12.2. This is an isomorphism.

Proof. fdt = α ∈ Ω1
0(R), where f ∈ Ω0

0(R).∫
R

α =

∫
R

fdt = c

If [α] ∈ ker

∫
R


⇔ c = 0

⇔ α = dF with F ∈ Ω0
0(R)

⇔ [α] = 0

The instance of Poincaré duality.

M = R Hk
dR(R) Hk

c (R)
k = 0 R 0
k = 1 0 R

H∗
c (M) =

n⊕
k=0

Hk
c (M) is an algebra with ∧ induced by wedge product on

forms.
Hk
dR(M)×H l

c(M) → Hk+l
c (M)

because a wedge product has compact support if one of the factors does.



CHAPTER 12. DE RHAM COHOMOLOGY 64

Suppose f : M → N is a smooth map between smooth manifolds. The
pullback f∗ : Ωk(N) → Ωk(M) commutes with d. In particular, if dω = 0, then
df∗ω = f∗dω = 0 and if ω = dα, f∗ω = df∗α.

⇒ f∗ : Hk
dR(N) → Hk

dR(M)

[ω] 7→ [f∗ω]

is well-defined, linear. This f∗ induces an alge-

bra homomorphism.
f∗ : HdR(N) → HdR(M)

Example 12.3. M = B1(0) ⊂ Rn.

Claim 12.3. There is no smooth map n :M → ∂M , r
∣∣∣∣
∂M

= Id

∣∣∣∣
∂M

.

Proof. Assume there is such an r, then

∂M = Sn−1 B1(0) =M ∂M = Sn−1i

IdSn−1

r

R 0 R

Hn−1
dR (Sn−1) Hn−1

dR (B1(0)) Hn−1
dR (Sn−1)i∗ r∗

=(r◦i)∗=Id∗
Sn−1=Id

This leads to a contradiction.



Chapter 13

Connections and Curvature

13.1 Connection
Let E →M be a smooth vector bundle of rank k. Then

Γ(T ∗M ⊗ E) = Ω1(E)

which is adjunction T ∗M ⊗ E ↔ Hom(TM,E). If α ∈ Ω1(E), then α(X) ∈
Γ(E), ∀X ∈ X(M).

Definition 13.1. A connection ∇ on E is a R-linear map

∇ : Γ(E) → Ω1(E)

satisfying the Leibniz rule

∇(f · s) = df ⊗ s+ f∇(s), ∀f ∈ C∞(M), s ∈ Γ(E)

Properties:

(1) ∇ does not increase the support of a section, i.e. if U ⊂ M open and

s ∈ Γ(E), s
∣∣∣∣
U

≡ 0, then ∇s
∣∣∣∣
U

≡ 0.

Proof. Take p ∈ U . Then there exists a smooth function f ∈ C∞(M),
with f(p) = 1 and supp f ⊂ U . Then f · s ≡ 0, so by R-linearity:

0 = ∇(f · s) = df ⊗ s+ f∇(s)

Evaluated at p

0 = (df ⊗ s)(p)︸ ︷︷ ︸
=0, because s(p)=0

+f(p)∇(s)(p) = ∇(s)(p)

This implies ∇(s) = 0 on U , because p ∈ U was arbitrary.

65
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(2) The value of ∇(s) at any point p ∈M depends only on the restriction of s

to an arbitrarily small neighborhood of p. If s, s′ ∈ Γ(E), s.t. s
∣∣∣∣
U

≡ s′
∣∣∣∣
U

for some U 3 p, then
∇(s)

∣∣∣∣
U

= ∇(s′)

∣∣∣∣
U

∇(s)(p) depends only on the germ of s at p. This is called differential
operator.

(3) If ∇1 and ∇0 are connections, so is t∇1 + (1− t)∇0 := ∇t, ∀t ∈ R.

Proof. ∇t is R-linear.

∇t(fs) = t∇1(fs) + (1− t)∇0(fs)

= t(df ⊗ s+ f∇1(s)) + (1− t)(df ⊗ s+ f∇0(s))

= df ⊗ s+ f∇t(s)

(4) If ∇1, ∇0 are connections, then ∇1 − ∇0 ∈ Ω1(End(E)), End(E) =
Hom(E,E) = E∗ ⊗ E.

Proof. ∇1 −∇0 is R-linear.
The Leibniz rule gives (∇1 −∇0)(fs) = f(∇1 −∇0)(s).
⇒ (∇1 −∇0)(s)(p) depends only on s(p).
(∇1 −∇0)p : Ep → T ∗

pM ⊗ Ep.
∇1 −∇0 ∈ Γ(E∗ ⊗ T ∗M ⊗ E) = Ω1(E∗ ⊗ E) = Ω1(End(E)).

Proposition 13.1. Every vector bundle E admits connections. The space of
connections is naturally an affine space whose vector space of translation is
Ω1(End(E)).

Proof. Suppose E has connections. Then the difference of two connections is
an element in Ω1(End(E)) by (4). Conversely, let A ∈ Ω1(End(E)) and ∇ a
connection on E.

Claim 13.2. ∇+A : Γ(E) → Ω(E)

s 7→ ∇(s) +A(s)

is a connection.

Proof. ∇+A R-linear is clear.
(∇+A)(fs) = ∇(fs)+A(fs) = df⊗s+f∇(s)+fA(s) = df⊗s+f(∇+A)(s).
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13.2 Existence of Connections
Pick a system of local trivializations for E.

ψi : π
−1(Ui) → Ui × Rk

On E

∣∣∣∣
Ui

, we define ∇i as follows: Let sj ∈ Γ(E
∣∣
Ui
) be defined by sj(p) =

ψ−1
i (p, ej), where e1, . . . , ek is the standard basis of Rk. Every section s ∈

Γ(E
∣∣
Ui
) has the form s =

k∑
j=1

fjsj for uniquely determined functions fj ∈

C∞(Ui).

∇i(s) :=

k∑
j=1

dfj ⊗ sj

This is clearly R-linear.

∇i(fs) = ∇i

 k∑
j=1

f · fjsj


=

k∑
j=1

d(ffj)⊗ sj

=

k∑
j=1

(fdfj + fjdf)⊗ sj

= df ⊗ s+ f · ∇i(s)

so ∇i is a connection on E
∣∣∣∣
Ui

.

Let ρi be a smooth partition of unity subordinate to the covering of M by
the Ui. Define ∇ :=

∑
i

ρi∇i · As in (3), we can show that ∇ is a connection.

∇i(sj) = 0 by definition.

Terminology. s1, . . . , sk form a frame for E
∣∣∣∣
Ui

.

If s is a section, s.t. ∇(s) ≡ 0 for some connection ∇, then s is called
parallel or covariantly constant.

Ωl(E) = Γ(ΛlT ∗M⊗) l-forms on M , with values in E.

Lemma 13.3. For every connection ∇ on E, there is a unique R-linear map
∇ : Ωl(E) → Ωl+1(E) satisfying:

∇(ω ⊗ s) = dω ⊗ s+ (−1)lω ∧∇s, ∀ω ∈ Ωl(M), s ∈ Γ(E) (13.1)

Moreover, this ∇ satisfies

∇(f(ω ⊗ s)) = (df ∧ ω)⊗ s+ f∇(ω ⊗ s), f ∈ C∞(M)



CHAPTER 13. CONNECTIONS AND CURVATURE 68

Proof. Every element in Ωl(E) is locally a sum of terms of the form ω ⊗ s.
Define ∇ using a partition of unity and linearity, so ∇ is uniquely determined
by (13.1).

∇(f(ω ⊗ s)) = ∇((fω)⊗ s)

= d(fω)⊗ s+ (−1)lf(ω ∧∇s)
= (df ∧ ω)⊗ s+ fdω ⊗ s+ f(−1)lω ∧∇s
= (df ∧ ω)⊗ s+ f∇(ω ⊗ s)

13.3 Curvature
Let ∇ be a connection on E.

Lemma 13.4. The composition ∇ ◦∇ : Γ(E) → Ω2(E) is function-linear.

Proof.

(∇ ◦∇)(fs) = ∇(df ⊗ s+ f∇(s))

= ∇(df ⊗ s) +∇(f∇(s))

= dd︸︷︷︸
d2≡0

f ⊗ s− df ∧∇s+ df ∧∇s+ f∇(∇s)

= f(∇ ◦∇)(s)

The lemma shows that ∇∇(s) = F∇(s), where F∇ ∈ Ω2(End(E)).

Definition 13.2. F∇ is called the curvature of ∇.

Let E → M be smooth vector bundle with connection ∇. Let s1, . . . , sk be
frame. Then

∇(si) =

k∑
j=1

ωij ⊗ sj

where ωij ∈ Ω1(M). We have s =
k∑
i=1

fisi, ∇(s) =
k∑
i=1

(dfi ⊗ si + fi∇(si))

completely determined by (ωij). F∇ ∈ Ω2(End(E)).

F∇(si) =

k∑
j=1

Ωij ⊗ sj

where Ωij ∈ Ω2(M).
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Question: How is Ωij determined by ωij?

F∇(si) = ∇ ◦∇(si)

= ∇

∑
j

ωij ⊗ sj


=

k∑
j=1

(dωij ⊗ sj − ωij ∧∇(sj))

=

k∑
j=1

[
dωij ⊗ sj − ωij ∧

k∑
l=1

ωlj ⊗ sl

]

=

k∑
j=1

[
dωij −

k∑
l=1

ωil ∧ ωlj

]
⊗ sj .

So

Ωij = dωij −
k∑
l=1

ωil ∧ ωlj

This can be denoted as
Ω = dω − ω ∧ ω

Then

dΩij = −
∑
l

dωil ∧ ωlj +
∑
l

ωil ∧ dωlj

= −
∑
l

[
Ωil +

∑
m

ωim ∧ ωml

]
∧ ωlj +

∑
l

[
ωil ∧

(
Ωlj +

∑
m

ωlm ∧ ωmj

)]
=
∑
l

(ωil ∧ Ωlj − Ωil ∧ ωlj) +
∑
l,m

(ωil ∧ ωlm ∧ ωmj − ωim ∧ ωml ∧ ωlj)︸ ︷︷ ︸
=0

13.4 Bianchi Identity
dΩij =

∑
l

[ωil ∧ Ωlj − Ωil ∧ ωlj ]

which can be denoted as

dΩ = ω ∧ Ω− Ω ∧ ω

Let s′1, . . . , s′k be another frame.

s′i =
∑

gijsj

where g = (gij) invertible. Then

∇(s′i) =

k∑
j=1

ω′
ijs

′
j
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where (ωij)
′ is the connection matrix of ∇ with respect to s′1, . . . , s′k.

∇(s′i) = ∇

∑
j

gijsj


=
∑
j

(dgij ⊗ sj + gij∇(sj))

=
∑
j

(
dgij ⊗ sj + gij

k∑
l=1

ωjk ⊗ sl

)

=

k∑
l=1

dgij + k∑
j=1

gijωjl

⊗ sl

=

k∑
l=1

dgil +∑
j

gijωjl

⊗
k∑

m=1

g−1
lm s

′
m

=

k∑
m=1

∑
l

dgil +
∑
j

gijωjl

 g−1
lm

⊗ s′m

Then

ω′
im =

∑
l

dgil +∑
j

gijωjl

 g−1
lm

This can be denoted as
ω′ = dgg−1 + gωg−1

The following terms are the same:

a choice of local trivialization ⇔ a choice of a frame
⇔ a choice of gauge

A change of frame is called a gauge transformation g.

Ω′ = dω′ − ω′ ∧ ω′

= d(dgg−1 + gωg−1)− (dgg−1 + gωg−1) ∧ (dgg−1 + gωg−1)

= d2gg−1 − dg ∧ dg−1 + dg ∧ ωg−1 + gdωg−1 − gω ∧ dg−1

− dgg−1 ∧ dgg−1 − gωg−1 ∧ dgg−1 − dgg−1 ∧ gωg−1 − gωg−1 ∧ gωg−1

= gΩg−1

Compare the following two equation:

ω′ = dgg−1 + gωg−1

Ω′ = gΩg−1

The first one shows that connection is not a “tensor”, while the second one
shows that curvature is a “tensor”.

Let ∇ : Γ(E) → Ω(E).
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Definition 13.3. ∇Xs = 〈∇s,X〉 ∈ Γ(E) for every X ∈ X(M) is the covariant
derivative of s (in the direction of X).

Let (U,ϕ) be a chart for M .

x1, . . . , xn : U → R
p 7→ ϕi(p)

where dx1, . . . , dxn are the dual frame to O1, . . . ,On.
Let s1, . . . , sk be a frame for E

∣∣∣∣
U

. ∇ is represented by ω = (ωij) with

respect to s1, . . . , sk. Then ωij =
n∑
α
ω α
ij dxα for unique ω α

ij ∈ C∞(U), where

ω α
ij = 〈ωij , ∂α〉.

∇∂αsi = 〈∇si, ∂α〉 =

〈∑
j

ωij ⊗ sj , ∂α

〉
=
∑
j

〈ωij , ∂α〉 ⊗ sj =
∑
j

ω α
ij sj

s =

k∑
i=1

fisi

∇∂αs = 〈∇s, ∂α〉 =

〈
k∑
i=1

dfi ⊗ si + fi∇si, ∂α

〉
=

k∑
j=1

∂αfjsj +
∑
i,j

fiω
α

ij sj

=

k∑
j=1

(
∂αfj +

k∑
i=1

fiω
α

ij

)
sj

Aα := (ω α
ij ) is k × k matrix of C∞-functions on U .

∇∂αs = ∂αs+Aα(s)

We define
∇α := ∂α +Aα

13.5 Parallel Transport
Let M ⊂ Rn open. Let E π−→ M smooth vector bundle of rank k, with a
connection ∇. Let y1, . . . , yn be linear coordinates on Rn. Let c : [0, 1] →M be
smooth curve, then write it is in terms of coordinates

c(t) = (y1(t), . . . , yn(t))

ċ(t) =

n∑
α=1

dyα
dt

∂

∂yα
=

n∑
α=1

ẏα∂α
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Assume E is trivial. E ∼= M × Rk. Let s1, . . . , sk be the frame with si(p) =

(p, ei). s ∈ Γ(E) is written uniquely as s =
k∑
i=1

xisi.

∇ċ(s) = 〈∇s, ċ〉

=

〈
k∑
i=1

dxi ⊗ si + xi∇si,
n∑
α=1

ẏα∂α

〉

=
∑
i,α

〈
n∑
j=1

∂xi
∂yj

dyj ⊗ si + xi

k∑
j=1

ωij ⊗ sj , ẏα∂α

〉

=
∑
i,α

ẏα
∂xi
∂yα

si + xi

n∑
j=1

ω α
ij ẏαsj

=
∑
j,α

ẏα
∂xj
∂yα

sj +
∑
i,j,α

xiω
α

ij ẏαsj

=

k∑
j=1

(
n∑
α=1

(
∂xj
∂yα

ẏα +

k∑
i=1

xiω
α

ij

)
ẏα

)
sj

Proposition 13.5. Let E → M be any smooth vector bundle, with a connec-
tion ∇. Let c : [0, 1] → M be a smooth curve and v ∈ Ec(0). Then there exists
a unique lift c̃ : [0, 1] → E with π ◦ c̃ = c, with c̃(0) = v and ∇ċs ≡ 0 if s is a

section of E
∣∣∣∣
im c

given by c̃.

Proof. By compactness of [0, 1], we can choose a finite subdivision t0 = 0 <

t1 < · · · < tl = 1, s.t. c
∣∣∣∣
[ti,ti+1]

has image in an open set in M , which is the

domain of a chart and over which E is trivial.
Without loss of generality, we only need to prove the proposition for c with

image in a chart where E is trivial.
We write c(t) = (y1(t), . . . , yn(t)) and use the frame s1, . . . , sk given by the

trivialization.
c̃(t) =

∑k
i=1 xi(t)si(c(t)) with v = c̃(0) =

k∑
i=1

xi(0)si(c(0)).

The equation ∇ċs ≡ 0 is equivalent to
n∑
α=1

(
∂xj
∂yα

+

k∑
i=1

xiω
α

ij

)
ẏα ≡ 0, ∀j ∈ {1, . . . , k}

ẋj +
∑
i,α

xiω
α

ij ≡ 0

This is a linear system of ODE for the function x1, . . . , xk.
For every initial condition x1(0), . . . , xk(0), there is a unique smooth solu-

tion, which, moreover, depends linearly on the initial condition.

Corollary 13.6. Let E π−→ M and ∇ be as in the proposition. Then every
smooth curve c : [0, 1] →M defines a unique linear map

Ec(0) → Ec(1)

c̃(0) = v 7→ c̃(1)
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This linear map is an isomorphism
Let E π−→ M be any smooth vector bundle over M . p, q ∈ M , Ep, Eq are

k-dimensional vector spaces.

(1) If p, q ∈ U ⊂ M and ψ : E

∣∣∣∣
U

→ U × Rk trivialization, then ψ identifies

Ep with {p} × Rk and Eq with {q} × Rk, so those are identified using ψ.

(2) If a connection ∇ on E is given and there exists a smooth path c(0) = p,
c(1) = q, then Pc =parallel transport along c defines an isomorphism
between Ep and Eq. Pc depends not just on ∇ but also on c.

In a trivialization, every ∇ is given by ∇α = ∂α +Aα.

ωij =
∑
α

ω α
ij dyα, Aα = ω α

ij

Proposition 13.7. Let E π−→ M be a smooth vector bundle of rank k and
s1, . . . , sk be frame. Let ∇ be a connection on E, ωij its connection matrix
with respect to s1, . . . , sk and Ωij its curvature matrix. If we pick a chart with
coordinate functions y1, . . . , yn, then

[∇α,∇β ]si =

k∑
j=1

Ωij(∂α, ∂β)sj

Corollary 13.8. F∇ ≡ 0 ⇔ Ωij for every local frame ⇔ [∇α,∇β ] = 0.
Proof.

Ωij(∂α, ∂β) =

(
dωij −

k∑
l=1

ωil ∧ ωlj

)
(∂α, ∂β)

= L∂α(ω
β

ij )− L∂β (ω
α

ij )−
k∑
l=1

ω α
il ω β

lj − ω β
il ω α

lj

= ∂αω
β

ij − ∂βω
α

ij −
k∑
l=1

(ω α
il ω β

lj − ω β
il ω α

lj )

∇α∇βsi = ∇α(〈∇si, ∂β〉) = ∇α

〈 k∑
j=1

ωij ⊗ sj , ∂β

〉
= ∇α

 k∑
j=1

ω β
ij sj

 =

〈
∇

 k∑
j=1

ωijsj

 , ∂α

〉

=

k∑
j=1

〈dω β
ij ⊗ sj + ω β

ij ∇sj , ∂α〉

=

k∑
j=1

(∂αω
β

ij )sj +

k∑
j=1

ω β
ij

k∑
l=1

ω α
jl sl

=

k∑
j=1

(
∂αω

β
ij +

k∑
l=1

ω β
il ω α

lj

)
sj
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⇒ (∇α∇β −∇β∇α)si

=

k∑
j=1

(
∂αω

β
ij +

k∑
l=1

ω β
il ω α

lj − ∂ βω
α

ij −
k∑
l=1

ω α
il ω β

lj

)
sj

=

k∑
j=1

(
∂αω

β
ij − ∂βω

α
ij −

k∑
l=1

(
ω α
il ω β

lj − ω β
il ω α

lj

))
sj

=

k∑
j=1

Ωij(∂α, ∂β)sj

Over a curve, every ∇ admits local trivializations by parallel sections, i.e. a
parallel frame.

Theorem 13.9. E admits a system of local trivializations by ∇-parallel frames
if and only if F∇ ≡= 0.

Definition 13.4. s ∈ Γ(E) is ∇-parallel if ∇s ≡ 0. A frame s1, . . . , sk is
∇-parallel if ∇si ≡ 0, ∀i.

Proof. Suppose s1, . . . , sk is a∇-parallel local frame. Then 0 = ∇si =
∑
j

ωij⊗sj

⇒ ωij = 0, ∀i, j. ⇒ Ωij = dωij −
∑
l

ωil ∧ ωlj = 0, so F∇ ≡ 0.

Conversely, if F∇ ≡ 0, we want to find local ∇-parallel frames. Since the
statement is local, we work on M = Rn.

For n = 1, we find a ∇-parallel frame over R by parallel transport.
For n > 1, we prove the statement by induction.
Let p ⩾ 1 and assume we have a ∇-parallel frame over Rp×{0} ⊂ Rp+1. By

construction, E is trivial on Rn, so we may pick an arbitrary frame for E. We
need to find a gauge transformation g, so that s′i =

∑
j

gijsj gives a ∇-parallel

frame s′1, . . . , s′k. We want to solve

0 = ω′
ij = (dg · g−1 + gωg−1)ij

⇔ ω′ α
ij = 0, ∀α

⇔ (dg + gω) α
ij = 0, ∀α

⇔ ∂αgij +
∑
l

gilω
α

lj = 0, ∀α (*)

For the inductive step, we assume, we have a g s.t. (*) holds for α ⩽ p.
In the inductive step, we assume the statement has been proved for Rp. This

means ω α
ij = 0 for α ⩽ p.

To obtain the statement over Rp+1, we need to solve

∂αgij = 0 for α ⩽ p and ∂p+1gij +
∑
l

gilω
p+1

lj = 0 ∀i, j (**)
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Fix all yβ except yp+1. We treat the second equation in (**) as an ODE in yp+1.
With initial condition g(0) = 1, this ODE has a unique solution.

Varying the starting point (the y-coordinates other than yp+1), the solutions
of the ODE vary smoothly.

The assumption that F∇ ≡ 0, means [∇α,∇β ] = 0, ∀α, β. Take α ⩽ p,
β = p+ 1. Then

∂αω
p+1

il − ∂p+1���ω α
il +

∑
j

(ω p+1
ij ���ω α

jl −���ω α
ij ω p+1

jl ) = 0

⇒ ∂αω
p+1

il = 0

⇒ ω′ p+1
ij = (dg · g−1 + gωg−1)p+1

ij = 0

because g solves the second equation in (**).

Corollary 13.10. A vector bundle E π−→ M admits a flat connection ∇ if and
only if it admits a system of trivializations with constant transition maps.

Proof. If E admits ∇ with F∇ ≡ 0, then we can find local trivialization given
by ∇-parallel frames.

s1, . . . , sk
U ω

s′1, . . . , s
′
k

V ω′

ψU : π−1(U) → U × Rk

v =
∑
i

λisi 7→ (π(v), (λ1, . . . , λk))

ψV : π−1(V ) → V × Rk

v =
∑
i

µis
′
i 7→ (π(v), (µ1, . . . , µk))

ψV ◦ ψ−1
U : (U ∩ V )× Rk → (U ∩ V )× Rk

(p, ω) 7→ (p, g(p)ω)

where g : U ∩ V → GLk(R) is smooth.

��ω′ = dgg−1 + g�ωg−1 ⇔ dg ≡ 0, so g is constant.

Conversely suppose we have (Ui, ψi) a system of local trivialization for E, s.t.
each ψj ◦ ψ−1

i has the form (p, ω) 7→ (p, g(p)ω) with g constant.

On E
∣∣∣∣
Ui

, we define a connection ∇ by making the constant sections in the

trivial bundle parallel, i.e. si(p) = ψ−1(p, ei).

∇

∑
j

fjsj

 =
∑
j

dfj ⊗ sj

Claim 13.11. If Ui ∩ Uj 6= ∅, then ∇i = ∇j on π−1(Ui ∩ Uj).
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Proof. s′i =
∑
j

gijsj , with dgij ≡ 0.

⇒ s′i which are ∇j parallel are also ∇i parallel.
⇒ ∇i = ∇j

⇒ The ∇i fit together to a global connection ∇. Since ∇i is flat, so is ∇.

Remark. To prove existence of connections on arbitrary E, we also took local
trivializations (Ui, ψi) and the corresponding flat connection ∇i. If the tran-
sition functions are not constant, the ∇i do not agree on the overlaps of their
domains.

∇ =
∑
i

ρi∇i, ρi a smooth partition of unity, is not flat.

13.6 Compatible
E

π−→M admits a positive definite metric 〈 , 〉 : Γ(E)× Γ(E) → C∞(M).

Definition 13.5. A connection ∇ on E is compatible with 〈 , 〉, if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉, ∀s1, s2 ∈ Γ(E) (13.2)

Lemma 13.12. ∇ is compatible with 〈 , 〉 if and only if for every orthonor-
mal local frame s1, . . . , sk, the connection matrix ω representing ∇ is skew-
symmetric, i.e. ωij = −ωji, ∀i, j.

Proof. Let s1, . . . , sk be orthonormal frame with respect to 〈 , 〉. Then

〈si, sj〉 = const., ∀i, j

If ∇ is compatible with 〈 , 〉, then

0 = d〈si, sj〉
= 〈∇si, sj〉+ 〈si,∇sj〉

=

〈∑
l

ωil ⊗ sl, sj

〉
+

〈
sj ,
∑
l

ωjl ⊗ sl

〉
=
∑
l

(ωil〈sl, sj〉+ ωjl〈si, sl〉)

= ωij + ωji

⇔ ωij = −ωji

Conversely, assume ω is skew-symmetric

〈∇si, sj〉+ 〈si,∇sj〉 = ωij + ωji = 0

〈si, sj〉 = const. ⇒ d〈si, sj〉 = 0

⇒ (13.2) holds for the basis sections.
Let s =

∑
i

fisi and s′ =
∑
j

gjsj . Then

〈s, s′〉 =
∑
i

figi ⇒ d〈s, s′〉 =
∑
i

fidgi +
∑
i

gidfi
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〈∇s, s′〉+ 〈s,∇s′〉 =
∑
i,j

〈dfi ⊗ si + fi∇si, gjsj〉+ 〈fisi, dgj ⊗ sj + gj∇sj〉

=
∑
i

gidfi +
∑
i

fidgi +
∑
i,j

figj (〈∇si, sj〉+ 〈si,∇sj〉)︸ ︷︷ ︸
=0 by above

⇒ d〈s, s′〉 = 〈∇s, s′〉+ 〈s,∇s′〉

Lemma 13.13. If ∇ is compatible with 〈 , 〉, then Ω is skew-symmetric for
every orthonormal frame.
Proof.

Ωij = dωij −
∑
l

ωil ∧ ωlj

= −dωji −
∑
l

ωli ∧ ωjl

= −(dωij −
∑
l

ωjl ∧ ωli)

= −Ωji

Definition 13.6. A ∈ Γ(EndE) is skew-symmetric with respect to 〈 , 〉 if

〈As, s′〉 = −〈s,As′〉, ∀s, s′ ∈ Γ(E)

EndE = Skew− EndE ⊕ Sym− End(E).
Proposition 13.14. For every metric 〈 , 〉, there exist compatible connections
∇. All such connections is naturally an affine space for Ω1(Skew− End(E)).

Proof. Let {Ui | i ∈ I} be an open cover of M , s.t. E

∣∣∣∣
Ui

is trivial. Then

on every Ui, we have an orthonormal local frame for E with respect to 〈 , 〉.

Let s1, . . . , sk be such an orthonormal frame over Ui. Define ∇i on E

∣∣∣∣
Ui

by

∇i(sj) ≡ 0.

Claim 13.15. ∇i is compatible with 〈 , 〉.

Proof. With respect to orthonormal frame s1, . . . , sk, ωij ≡ 0. So ωij is skew-
symmetric. Let ρi be a smooth partition of unity subordinate to Ui.

Define ∇ :=
∑
i

ρi∇i. This is a connection on E compatible with 〈 , 〉,

because each ∇i is.
Suppose ∇, ∇′ are both compatible with 〈 , 〉. Set ∇−∇′ = A ∈ Ω1(EndE).

Then
〈As, s′〉 = 〈(∇−∇′)s, s′〉

= 〈∇s, s′〉 − 〈∇′s, s〉
= d(〈s, s′〉)− 〈s,∇s′〉 − d(〈s, s′〉) + 〈s,∇′s〉
= −〈s, (∇−∇′)s′〉
= −〈s,As′〉
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So A ∈ Ω1(Skew− End(E)).
If ∇ is compatible with the metric and A ∈ Ω1(Skew− EndE), then ∇+A

is also compatible.

Example 13.1. k = 1: Let s be a (local) section of E, s nowhere zero.

∇s = α⊗ s = ω11 ⊗ s

Ω11 = dω11 −
∑
l

ω1l ∧ ωl1 = dω11 −(((((ω11 ∧ ω11

⇒ dΩ11 = 0

Suppose we have a metric 〈 , 〉 and 〈s, s〉 ≡ 1. If ∇ is compatible with 〈 , 〉,
then ∇s ≡ 0.

〈s, s〉 = const. ⇒ 0 = 2〈s,∇s〉 ⇒ ∇s ≡ 0, by 1-dimension

Conclusion: Every compatible connection ∇ on a rank 1 bundle is flat. ⇒ Every
rank 1 bundle admits a flat connection.

13.7 Affine Connection
Definition 13.7. A connection on E = TM is called an affine connection
on M .

Γ(E) → Ω1(E)
iX−−→ Γ(E)

s 7→ ∇s 7→ ∇Xs

where X ∈ X(M). If E = TM , then s ∈ X(M).
Example 13.2. There is no affine connection ∇ satisfying ∇XY = ∇YX,
∀X,Y ∈ X(M).

13.8 Torsion
Definition 13.8. If ∇ is an affine connection on M , then

T∇(X,Y ) := ∇XY −∇YX − [X,Y ], for X,Y ∈ X(M)

T∇ is the torsion of ∇.
Definition 13.9. ∇ is symmetric if it is torsion-free, i.e. T∇ ≡ 0.
Proposition 13.16 (Properties of T∇).
(1) T∇ is skew-symmetric in X, Y .

(2) T∇ is C∞(M)-linear in X and Y .
Proof.

T∇(fX, Y ) = ∇fXY −∇Y fX − [fX, Y ]

= f∇XY − 〈df ⊗X + f∇X,Y 〉 − f [X,Y ] + LY f︸︷︷︸
=df(Y )

X

= f · T∇(X,Y )
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Let x1, . . . , xn be local coordinates on M given by some charts (U,ϕ). Then

∂1, . . . , ∂n form a local frame for TM
∣∣∣∣
U

= TU . If ∇ is any affine connection on

M , we can write

∇∂i =
n∑
j=1

ωij ⊗ ∂j ωij =

n∑
l=1

ω l
ij dxl

∇∂l∂i =

n∑
j=1

〈ωij , ∂l〉∂j =
n∑
j=1

ω l
ij ∂j =

n∑
j=1

Γ jli∂j

The Γ jli are called the Christoffel symbols of ∇ with respect to the local coordi-
nates x1, . . . , xn

T∇(∂α, ∂β) = ∇∂α∂β −∇∂β∂α −����[∂α, ∂β ] =

n∑
j=1

(Γ jαβ − Γ jβα)∂j

Lemma 13.17. T∇ ≡ 0 ⇔ Γ jαβ = Γ jβα, ∀α, β, j ∈ {1, . . . , n} and all local
coordinate systems on M .

Definition 13.10. ∇∗ on E∗ by

dλ(s) = λ(∇s) + (∇∗λ)(s)

d〈λ, s〉 = 〈λ,∇s〉+ 〈∇∗λ, s〉

where ∀λ ∈ Γ(E∗), s ∈ Γ(E).

Claim 13.18. ∇∗ is a connection on E∗.

Proof.
(∇∗λ)(s) = dλ(s)− λ(∇(s))

(∇∗(fλ))(s) = d(fλ)(s)− (fλ)(∇s)
= d(f · λ(s))− (f · λ)(∇s)
= λ(s)df + fdλ(s)− f · λ(∇(s))

= λ(s)df + f(∇∗λ)(s)

= (df · λ+ f∇∗λ)(s)

Let s1, . . . , sk be a local frame for E, and λ1, . . . , λk the dual frame for E∗, i.e.

λi(sj) = δij

0 = λi(∇sj) + (∇∗λi)(sj)

= λi

(
k∑

m=1

ωjm ⊗ sm

)
+

(
k∑

m=1

ω∗
il ⊗ λl

)
(sj)

= ωji + ω∗
ij

⇒ ω∗
ij = −ωji, ω∗ = −ωt

If ∇ is an affine connection of M , then ∇∗ is a connection on T ∗M .
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Proposition 13.19. ∇ is torsion-free if and only if

Ω1(M) = Γ(T ∗M) Ω1(T ∗M) = Γ(T ∗M ⊗ T ∗M) Ω2(M)∇∗

=d

∼

Proof. Let x1, . . . , xn be local coordinates, given by a chart (U,ϕ). Then ∂1, . . . , ∂n
is a local frame for TM and dx1, . . . , dxn is the dual frame for T ∗M .

Every 1-form α on U is of the form

β =

n∑
i=1

fidxi

⇒ dβ =

n∑
i=1

dfi ∧ dxi =
∑
i

∑
j

∂fi
∂xj

dxj ∧ dxi =
∑
i<j

(
∂fi
∂xj

− fj
∂xi

)
dxj ∧ dxi

∇∗β =
∑
i

∇∗(fidxi)

=
∑
i

dfi ⊗ dxi + fi∇∗dxi

=
∑
i

dfi ⊗ dxi + fi
∑
j

ω∗
ij ⊗ dxj

=
∑
i

dfi ⊗ dxi − fi
∑
j

ωji ⊗ dxj


=
∑
i

∑
j

∂fi
∂xj

dxj ⊗ dxi − fi
∑
j,α

ω α
ji dxα ⊗ dxj


=
∑
i,j

∂fi
∂xj

dxj ⊗ dxi −
∑
i,j,α

fiω
α

ji dxα ⊗ dxj

=
∑
j,α

∂fj
∂xα

dxα ⊗ dxj −
∑
i,j,α

fiω
α

ji dxα ⊗ dxj

=
∑
j,α

(
∂fj
∂xα

−
∑
i

fiω
α

ji

)
dxα ⊗ dxj

∧(∇∗β) =
∑
j<α

(
∂fj
∂xα

− ∂fα
∂xj

−
∑
i

fi(ω
α

ji − ω j
αi )

)
dxα ∧ dxj

∧(∇∗β) = dβ, ∀β ⇔ ωαji − ωjαi = 0, ∀j, α ⇔ Γ iαj = Γ ijα, ∀α, j ⇔ T∇ ≡ 0



CHAPTER 13. CONNECTIONS AND CURVATURE 81

β = df :

∇∗β = ∇∗

(
n∑
i=1

∂f

∂xi
dxi

)

=

n∑
i=1

d

(
∂f

∂xi

)
dxi +

∂f

∂xi
∇∗(dxi)

=
∑
i,j

∂2f

∂xi∂xj
dxj ⊗ dxi −

∂f

∂xi
ωji ⊗ dxj

=
∑
i,j

(
∂2f

∂xi∂xj
dxj ⊗ dxi −

∑
α

∂f

∂xi
ω α
ji dxα ⊗ dxj

)

=
∑
α,j

(
∂2f

∂xj∂xα
−
∑
i

∂f

∂xi
Γ iαj

)
dxα ⊗ dxj

T∇ ≡ 0 ⇔ ∇∗df︸ ︷︷ ︸
∈Γ(T∗M⊗T∗M)

is symmetric ∀f ∈ C∞(M).

T∇+A(X,Y ) = (∇+A)XY − (∇+A)YX − [X,Y ]

= ∇XY −∇YX − [X,Y ]︸ ︷︷ ︸
=T∇

+AX(Y )−AY (X)

where A ∈ Ω1(End(TM)), AX ∈ Γ(End(TM)), AXY is evaluation of the endo-
morphism AX on Y .

13.9 Riemannian Geometry
Theorem 13.20. Let 〈 , 〉 be a metric on TM (a Riemannian metric on M).
For every C∞(M)-bilinear skew-symmetric

T : X(M)× X(M) → X(M)

There exists a unique affine connection ∇ compatible with 〈 , 〉 and T∇ = T .
Proof. Uniqueness: Suppose ∇ is compatible, with 〈 , 〉 and T∇ = T .

d〈X,Y 〉 = 〈∇X,Y 〉+ 〈X,∇Y 〉, ∀X,Y ∈ TM

LZ〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉, ∀X,Y, Z ∈ TM

T (Z, Y ) = ∇ZY −∇Y Z − [Z, Y ]

〈∇ZX,Y 〉 = LZ〈X,Y 〉 − 〈X,∇ZY 〉
= LZ〈X,Y 〉 − 〈X,T (Z, Y )〉 − 〈X,∇Y Z〉 − 〈X, [Z, Y ]〉
= LZ〈X,Y 〉 − 〈X,T (Z, Y )〉 − LY 〈X,Z〉+ 〈∇YX,Z〉 − 〈X, [Z, Y ]〉
= LZ〈X,Y 〉 − 〈X,T (Z, Y )〉 − LY 〈X,Z〉+ 〈T (Y,X), Z〉+ 〈∇XY, Z〉
+ 〈[Y,X], Z〉 − 〈X, [Z, Y ]〉
= LZ〈X,Y 〉 − 〈X,T (Z, Y )〉 − LY 〈X,Z〉+ 〈T (Y,X), Z〉+ LX〈Y, Z〉
− 〈Y,∇XZ〉+ 〈[Y,X], Z〉 − 〈X, [Z, Y ]〉
= LZ〈X,Y 〉 − 〈X,T (Z, Y )〉 − LY 〈X,Z〉+ 〈T (Y,X), Z〉+ LX〈Y, Z〉
− 〈Y, T (X,Z)〉 − 〈Y,∇ZX〉 − 〈Y, [X,Z]〉+ 〈[Y,X], Z〉 − 〈X, [Z, Y ]〉
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Therefore, we have the so called Koszul formula.

〈∇ZX,Y 〉 = 1

2
(LZ〈X,Y 〉 − LY 〈X,Z〉+ LX〈Y, Z〉 − 〈X,T (Z, Y )〉+ 〈Z, T (Y,X)〉

− 〈Y, T (X,Z)〉 − 〈Y, [X,Z]〉+ 〈[Y,X], Z〉 − 〈X, [Z, Y ]〉)

This shows ∇ZX is uniquely determined ∀Z,X ∈ X(M).
Existence: Define ∇ZX by the Koszul formula. Fix M and 〈 , 〉 on TM .

Let ∇ be the Levi-Civita connection of 〈 , 〉. Let x1, . . . , xn be local coordinates
given by a chart ∂1, . . . , ∂n the coordinate vector fields.

γij = 〈∂i, ∂j〉

〈∇∂i∂j , ∂k〉 =
1

2
(L∂iγjk + L∂jγki − L∂kγij) =

1

2
(∂iγjk + ∂jγki − ∂kγij)

∇∂i∂j =

n∑
k=1

ω i
jk ∂k =

n∑
k=1

Γ kij∂k

〈∇∂i∂j , ∂l〉 =
n∑
k=1

Γ kijγkl =
1

2
(∂iγjk + ∂jγki − ∂kγij)

Formula of Γ kij in terms of γij .

Setting T = 0, we get

Corollary 13.21 (Fundamental Lemma of Riemannian Geometry). For every
metric on TM , there exists a unique, compatible, torsion-free connection.

Definition 13.11. This connection ∇ as in the corollary is called the Levi-
Civita connection of (M ; 〈 , 〉).

Definition 13.12. If ∇ is the Levi-Civita connection, then

R(X,Y )Z := (F∇(X,Y ))Z

is called the Riemann curvature tensor of the metric 〈 , 〉.

This is trilinear over C∞(M).

R : X(M)× X(M)× X(M) → X(M)

(X,Y, Z) 7→ R(X,Y )Z

Equivalently, we can consider R as follows:

R : X(M)× X(M)× X(M)× X(M) → C∞(M)

(X,Y, Z,W ) 7→ 〈R(X,Y )Z,W 〉

Proposition 13.22 (Symmetries of R).

(1) R(X,Y )Z = −R(Y,X)Z, because F∇ is a 2-form.

(2) R(X,Y )Z + R(Y, Z)X + R(Z,X)Y = 0, ∀X,Y, Z. Sometimes it is called
the first Bianchi Identity.
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(3) 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉, ∀X,Y, Z,W .

(4) 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉, ∀X,Y, Z,W

Proof. (2) It is enough to prove (2) for X,Y, Z with pairwise vanishing brackets.

F∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−����∇[X,Y ]s

In this case, left hand side of (2)

∇X∇Y Z −∇Y∇XZ +∇Y∇ZX −∇Z∇YX +∇Z∇XY −∇X∇ZY

= ∇X (∇Y Z −∇ZY )︸ ︷︷ ︸
=0

+∇Y (∇ZX −∇XZ)︸ ︷︷ ︸
=0

+∇Z (∇XY −∇YX)︸ ︷︷ ︸
=0 since T∇=0

= 0

(3): We need to prove 〈R(X,Y )Z,Z〉 = 0, ∀X,Y, Z. We may assume that
X,Y, Z have vanishing brackets.

〈R(X,Y )Z,Z〉 = 〈∇X∇Y Z,Z〉 − 〈∇Y∇XZ,Z〉

Consider

LX〈Z,Z〉 = 〈∇XZ,Z〉+ 〈Z,∇XZ〉 = Z〈∇XZ,Z〉
LY LX〈Z,Z〉 = 2LY 〈∇XZ,Z〉 = 2(〈∇Y∇XZ,Z〉+ 〈∇XZ,∇Y Z〉)

LY LX〈Z,Z〉 is symmetric in X,Y , since 〈X,Y 〉 = 0 and 〈∇XZ,∇Y Z〉 is sym-
metric in X,Y . Therefore, 〈∇Y∇XZ,Z〉 is symmetric in X,Y . Thus

⇒ 〈R(X,Y )Z,Z〉 = 0

(4):

〈R(X,W )Y, Z〉 〈R(Z,X)Y,W 〉

〈R(Y, Z)X,W 〉〈R(Y,W )Z,X〉

〈R(X,Y )Z,W 〉

〈R(Z,W )X,Y 〉

Sum for upper left-hand face is 〈R(Y,X)W,Z〉+〈R(W,Y )X,Z〉+〈R(X,W )Y, Z〉.
Sum of labels is = 0 by (1)+(2)+(3) for top left and right and bottom front and
back faces.

Sum the top left and right and subtract the bottom front and back faces: ⇒

⇒ The middle nodes cancel
⇒ 0 = 〈R(X,Y )Z,W 〉 − 〈R(Z,W )X,Y 〉
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Let M with metric and R its Riemann tensor.

Definition 13.13. Take p ∈M , X,Y ∈ TpM linearly independent

K(X,Y ) :=
〈R(X,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

This is called the sectional curvature of (M, 〈 , 〉) with respect to the plane
σ spanned by X,Y in TpM .

Claim 13.23. K(X,Y ) depends only on σ = span{X,Y }.

Proof. K(λX, Y ) =
λ2〈R(X,Y )Y,X〉

λ2 · (〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2)
= K(X,Y ) 6= 0.

Since K(X,Y ) = K(Y,X), we also get K(X,λY ) = K(X,Y ).

K(X,Y + λX) =
〈R(X,Y )(Y + λX), X〉+ 〈R(X,λX)(Y + λX), X〉

〈X,X〉(〈Y, Y 〉+ λ2〈X,X〉+ 2λ〈X,Y 〉)− 〈X,Y + λX〉2

= K(X,Y )

This shows K(X,Y ) is the same ∀X,Y ∈ σ.

Proposition 13.24. The collection of all sectional curvatures determines R.

Proof. Let V be a vector space with positive definite 〈 , 〉.
Let R,R′ : V × V × V → V be two trilinear maps satisfying the symmetry

of the curvature tensor. Then if K(X,Y ) =
〈R(X,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2
equals K ′

computed in the same way from R′ for all linear independent X, Y , R = R′.
R(X,Y )Z = 0 = R′(X,Y )Z, if X, Y are linear independent.
Assume X, Y linearly independent, then K(X,Y ) = K ′(X,Y ) implies

〈R(X,Y )Y,X〉 = 〈R′(X,Y )Y,X〉, ∀X,Y linearly independent

⇒ 〈R(X + Z, Y )Y,X + Z〉 = 〈R′(X + Z, Y )Y,X + Z〉
⇔ (((((((〈R(X,Y )Y,X〉+ 〈R(X,Y )Y, Z〉+ 〈R(Z, Y )Y, Z〉︸ ︷︷ ︸

=⟨R(Y,Z)X,Y ⟩=⟨R(X,Y )Y,Z⟩

+(((((((〈R(Z, Y )Y, Z〉 = (R↔ R′)

⇔ 2〈R(X,Y )Y, Z〉 = 2〈R′(X,Y )Y, Z〉, ∀Z

After one more polarization Y 7→ Y +W , we conclude

〈R(X,Y )Z,W 〉 = 〈R′(X,Y )Z,W 〉, ∀X,Y, Z,W

⇒ R = R′

Example 13.3. Let M = Rn, and 〈 , 〉 constant, standard. ∇ ∂

∂xn
= 0 gives

Levi-Civita ⇒ R ≡ 0, so K ≡ 0.
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Example 13.4. Let M ⊂ Rn+1 be smooth hypersurface. 〈 , 〉 on Rn+1 as in
13.3. ∇ the Levi-Civita connection of Rn+1. We restrict the constant scalars
product on Rn+1 to the tangent space of M to get a metric 〈 , 〉 on TM .

Rn+1 × Rn+1

∣∣∣∣
M

= TRn+1

∣∣∣∣
M

= TM ⊕ TM⊥

where TM⊥ is the normal bundle of M .
If M is orientable, then there is a uniquely defined unit normal vector field

to M , so that the orientation of M together with the positive or of R defines
the standard orientation of Rn+1.

Definition 13.14. G :M → Sn ⊂ Rn+1

p 7→ n(p)

is the Gauss map of M .

Definition 13.15. L : TpM → TpM

v 7→ (∇̃vn)(p)

is the Weingarten map of M at p.

Lemma 13.25. L is self adjoint with respect to 〈 , 〉.

Proof. Let X,Y ∈ X(M).

〈L(X), Y 〉 = 〈∇̃Xn, Y 〉
= LX���〈n, Y 〉 − 〈n, ∇̃XY 〉
= −〈n, ∇̃YX +���[X,Y ]〉
= −〈n, ∇̃YX〉
= −LY���〈n,X〉+ 〈∇̃Y n,X〉
= 〈L(Y ), X〉
= 〈X,L(Y )〉

Lemma 13.26. DpG = L.

Proof. DpG : TpM → TG(p)S
n = TpM , since both are orthogonal complement

of n.
Let c : (−ε, ε) →M be a smooth curve, with c(0) = p and ċ(0) = v. Then

DpG(v) = (Dc(0)G)(ċ(0))

= D0(G ◦ c)
(
∂

∂t

)
=

d

dt
n(c(t))

∣∣∣∣
t=0

= ∇̃ċ(0)n

= L(v)

Let X, Y ∈ X(M).

∇̃XY = (∇̃XY )t + (∇̃XY )n with respect to Rn+1 = TpM ⊕ Rn(p)
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Definition 13.16. Define ∇XY = π(∇̃XY ), π : Rn+1 → TpM is the projection
with kernel Rn(p).

Lemma 13.27. ∇ is the Levi Civita connection of M .

Proof. Step 1: ∇ is a connection on TM . ∇XY is R-linear in X, Y and it is
C∞(M)-linear in X.

∇X(fY ) = π(∇̃X(fY )) = π(LXf · Y + f∇̃XY ) = LXf · Y + f · ∇XY

Leibniz rule for ∇.
Step 2: ∇ on TM is compatible with 〈 , 〉.

〈∇XY, Z〉+〈Y,∇XZ〉 = 〈∇̃XY, Z〉+〈Y, ∇̃XZ〉 = LX〈Y, Z〉, X, Y, Z ∈ X(M)

Step 3:

0 = T ∇̃(X,Y ) = ∇̃XY − ∇̃YX − [X,Y ], X, Y ∈ X(M) (13.3)

projecting to TM gives

0 = ∇XY −∇YX − [X,Y ] = T∇(X,Y )

In (13.3), take 〈−, n〉

0 = 〈∇̃XY, n〉 − 〈∇̃YX,n〉
Lemma 1 Proof
=========== −〈L(X), Y 〉+ 〈X,L(Y )〉

⇔ L is self adjoint with respect to 〈 , 〉.

X, Y ∈ X(M), ∇̃XY = ∇XY + 〈∇̃XY, n〉n = ∇XY − 〈L(X), Y 〉n.
Take X,Y, Z ∈ X(M).

∇̃X∇̃Y Z = ∇̃X(∇Y Z − 〈L(Y ), Z〉n)
= ∇̃X∇Y Z − LX〈L(Y ), Z〉 · n− 〈L(Y ), Z〉∇̃Xn

= ∇X∇Y Z − 〈L(X),∇Y Z〉 · n− 〈∇XL(Y ), Z〉 · n− 〈L(Y ),∇XZ〉 · n
− 〈L(∇XY ), Z〉 · n− 〈L(Y ), Z〉L(X)

Similarly for ∇̃Y ∇̃XZ

∇̃[X,Y ]Z = ∇[X,Y ]Z − 〈L([X,Y ], Z)〉n

0 = R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

= ∇X∇Y Z − 〈L(Y ), Z〉L(X)− (〈L(X),∇Y Z〉+ 〈∇XL(Y ), Z〉+ 〈L(Y ),∇XZ〉)n
−∇Y∇XZ + 〈L(X), Z〉L(Y ) + (〈L(Y ),∇XZ〉+ 〈∇Y L(X), Z〉+ 〈L(X),∇Y Z〉)n
−∇[X,Y ]Z + 〈L([X,Y ]), Z〉n

Projecting to TM , we get the Gauss equation

⇒ R(X,Y )Z = 〈L(Y ), Z〉L(X)− 〈L(X), Z〉L(Y )
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Projecting to n

⇒ 0 =(((((((−〈L(X),∇Y Z〉 − 〈∇XL(Y ), t〉(((((((−〈L(Y ),∇XZ〉+(((((((〈L(Y ),∇XZ〉
+ 〈∇Y L(X), Z〉+(((((((〈L(X),∇Y Z〉+ 〈L([X,Y ]), Z〉

⇒ 〈L([X,Y ]), Z〉 = 〈∇XL(Y ), Z〉 − 〈∇Y L(X), Z〉 ∀X,Y, Z ∈ X(M)

⇒ L([X,Y ]) = ∇XL(Y )−∇Y L(X) ∀X,Y ∈ X(M)

This is called the Codazzi-Mainardi equation. We can apply the Gauss equation
to any smooth hypersurface M ⊂ Rn+1. If M is an affine hyperplane, G is
constant, so L ≡ DG ≡ 0 ⇒ R(X,Y )Z = 0.

If M ⊂ Rn+1 is the unit sphere Sn, then G = Id ⇒ L = DG = Id. By the
Gauss equation

R(X,Y )Z = 〈Y, Z〉X − 〈X,Z〉Y

X, Y ∈ TpS
n, linear independent:

K(X,Y ) =
〈R(X,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2
=

〈Y, Y 〉〈X,X〉 − 〈X,Y 〉〈Y,X〉
〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

= 1

If M = Sn(r) is the sphere of Radius r in Rn+1, then

G =
1

r
⇒ L =

1

r
⇒ R(X,Y )Z =

1

r2
(〈Y, Z〉X − 〈X,Z〉Y ) ⇒ K(X,Y ) =

1

r2

Remark. (M, 〈 , 〉) is any Riemannian manifold. Consider (M,λ〈 , 〉︸ ︷︷ ︸
⟨ , ⟩λ

) for

λ > 0. Then K(X,Y )⟨ , ⟩λ =
1

λ
K(X,Y )⟨ , ⟩.
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The Euler Class

If E π−→ M is a vector bundle of rank 1, 〈 , 〉 a metric on E, then every metric
compatible connection ∇ is flat.

Now take E of rank k = 2. ∇ is connection on E compatible with a metric
〈 , 〉. Let s1, s2 be a local orthogonal frame with respect to 〈 , 〉.

∇si =
2∑
j=1

ωij ⊗ sj with ωij skew-symmetric
(

0 −ω12

−ω21 0

)
Then

Ωij = dωij −
2∑
l=1

ωil ∧ ωlj

Ωij is also skew-symmetric.

Ω12 = dω12 −
2∑
l=1

ω1l ∧ ωl2 = dω12 ⇒ dΩ12 = 0

We assume now that E is oriented and s1, s2 are positive with respect to this
orientation. Let s′1, s′2 be another local orthogonal frame, which is also positive
oriented.

s′i =

2∑
j=1

gijsj

si, s′i are defined on E
∣∣∣∣
U

, gij ∈ C∞(U). g ∈ SO(2) = S1 at every point.

g =

(
cos(f(x)) − sin(f(x))
sin(f(x)) cos(f(x))

)
Ω′

= gΩg−1

=

(
cos(f(x)) − sin(f(x))
sin(f(x)) cos(f(x))

)(
0 Ω12

−Ω21 0

)(
cos(f(x)) sin(f(x))
− sin(f(x)) cos(f(x))

)
=

(
0 Ω12

−Ω′
12 0

)
= Ω

88
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The last equality is because SO(2) is abelian. This shows that Ω and therefore
Ω12 is independent of the choice of oriented orthogonal frames s1, s2.

Ω12 is a globally well-defined closed 2-form.

Definition 14.1. e(E) := − 1

2π
[Ω12] ∈ H2

dR(M).

Proposition 14.1.

(1) e(E) = −e(E), E is the vector bundle with opposite orientation.

(2) If E admits a section s, which is nowhere zero, then e(E) = 0 [without loss
of generality 〈s, s〉 = 1. Then 0 = 2〈s,∇s〉, so 〈s,∇s〉 = 0. Take s1 = s.
There is a unique s2, s.t. s1, s2 are orthogonal and oriented. Globally
Ω12 = dω12, so [Ω] = 0 ∈ H2

dR(M).]

(3) The Euler class is independent of the choice of ∇ (compatible with a fixed
〈 , 〉). [Let ∇0, ∇1 be two different connections compatible with 〈 , 〉.

Then∇1−∇0 = A ∈ Ω1(

rank=1︷ ︸︸ ︷
Skew-End(E)), with respect to a local orthogonal

frame s1, s2: (
0 ω1

12

−ω1
12 0

)
−
(

0 ω0
12

−ω0
12 0

)
=

(
0 a
−a 0

)
a ∈ Ω1(M) is a globally well-defined 1-form, where a has trivial gauge
transformation.

ω1
12 = ω0

12 + a ⇒ Ω1
12 = Ω0

12 + da ⇒ [Ω1
12] = [Ω0

12] ∈ H2
dR(M)]

E of rank k is trivial if and only if ∃s1, . . . , sk sections, which are every-
where linear independent. E oriented of rank k is trivial if and only if
∃s1, . . . , sk−1 which are everywhere linear independent.

(4) e(E) is independent of the choice of metric.

[Sketch of proof: E × [0, 1]
π∈id−−−→ M × [0, 1] as a E vector bundle on

M × [0, 1]. On E(x,t), we consider the metric (1− t)〈−,−〉0x + t〈−,−〉1x =

〈〈−,−〉〉x,t. This is a metric on E, which restricts to E
∣∣∣∣
M×{0}

= E as

〈 , 〉0 and to E
∣∣∣∣
M×{1}

as 〈 , 〉1. Let ∇∇ be a connection on E compatible

with 〈〈 , 〉〉. From its curvature, we determine e(E) ∈ H2
dR(M × [0, 1]).

Let i0, i1 :M ↪→M × [0, 1], where i0(x) = (x, 0) and i1(x) = (x, 1). Then
e(E, 〈 , 〉0) = i∗0e(E, 〈〈 , 〉〉). Similarly, e(E, 〈 , 〉1) = i∗1e(E, 〈〈 , 〉〉). ⇒
e(E, 〈 , 〉0) = e(E, 〈 , 〉1), because i∗0 = Id = i∗1. By Poincaré lemma, i∗0
and i∗1 are homotopic maps induce the same HdR. ]

Example 14.1. M = S2. Take two copies of R2 ×R2. With the standard 〈 , 〉
on the second factor. And standard flat connection compatible with 〈 , 〉. Take
ψ : (R2 \ {0})× R2 → (R2 \ {0})× R2

(x, v) 7→
(
− x

‖x‖2
, g(x)v

) where g : R2 \ {0} → SO(2). X1 =
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R2 × R2, X2 = R2 × R2 are identified via ψ to get an oriented rank 2 vector
bundle E → S2, with a metric.

Let ∇0 be the given flat connection on E
∣∣∣∣
S2\{N}

, coming from X1.

Let ∇1 be the given flat connection on E
∣∣∣∣
S2\{S}

, coming from X2.

Choose a smooth partition of unity ρ, 1 − ρ subordinate to the covering of S2

by S2 \ {N} and S2 \ {S}. Write S2 \ {N,S} = S1 × R.

ρ : S1 × R → R
(ϕ, t) 7→ ρ(t)

ρ extends to a smooth function on S2. Define ∇ = ρ∇1 + (1− ρ)∇0. This is a
metric connection on E → S2. Over S2 \ {N,S}, consider the frame which is
parallel for ∇0 given by the standard basis for R2. With respect to this frame
the connection matrix for ∇ is that for ∇1 scaled by ρ.

Let s′1, s′2 be the parallel frame for ∇1 coming from X2. In this frame, ∇1

has zero connection matrix.

0 = ω′ = dgg−1 + gωg−1

⇒ gωg−1 = −dgg−1

⇒ ω = −g−1dg

ω12 = −
2∑
i=1

g1idgi2

Take g : S1 × R → SO(2)

(ϕ, t) 7→
(
cosϕ − sinϕ
sinϕ cosϕ

), we could also take g = einφ.

⇒ ω12 = −g11dg12 − g12dg22 = dϕ

In the frame s1, s2, ∇ is represented by
(

0 ρdϕ
−ρdϕ 0

)

Ω12 = d(ρdϕ) = dρ ∧ dϕ︸︷︷︸
Not really exact on S1

=
dρ

dt
dt ∧ dϕ

∫
S2

Ω12 =

∫
S1×R

Ω12 = −
(∫ +∞

−∞
dt
dρ

dt

)∫
S1

dϕ

 = −(ρ(∞)−ρ(−∞))·2π = −2π 6= 0

with g = einφ :

∫
S2

Ω12 = −2πn, g is called clutching map. We can do this for

general Sn.

If E, F are oriented preserving isomorphism, then e(E) = e(F ).
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If M is oriented, n-dimensional, then∫
M

: Hn
c (M) → R

is well defined and surjective.
M is an oriented 2-dimensional manifold, compact without boundary, then∫

M

: H2
dR(M) → R

If M is connected, this is an isomorphism.

Definition 14.2. χ(E) :=

∫
M

e(E) is the Euler number of E.

Let M be oriented 2-dimensional manifold, and 〈 , 〉 a Riemannian metric.
How do we determine e(TM)?
Let X1, X2 be a local orthogonal frame for (TM, 〈 , 〉), s.t. (X1, X2) is

positive oriented.

K(TpM) = 〈R(X1, X2)X2, X1〉 = 〈∇X1∇X2X2−∇X2∇X1X2−∇[X1,X2]X2, X1〉

where ∇Xi
, i = 1, 2 is the Levi-Civita connection.

∇X1 = ω12 ⊗X2

∇X2 = −ω12 ⊗X1

⇒
∇X2X2 = −ω12(X2)X1

∇X1
X1 = −ω12(X1)X1

∇[X1,X2]X2 = −ω12([X1, X2])X1

Therefore,

K(TpM) = 〈∇X1(−ω12(X2)X1)−∇X2(−ω12(X1)X1) + ω12〈([X1, X2])X1, X1〉
= 〈−LX1ω12(X2) ·X1 −(((((((

ω12(X2)∇X1X1 + LX2ω12(X1) ·X1

+(((((((
ω12(X1)∇X2X1 + ω12([X1, X2])X1, X1〉

= −LX1ω12(X2) + LX2ω12(X1) + ω12([X1, X2])

= −(dω12)(X1, X2)

= −Ω12(X1, X2)

[M n-dimensional oriented, 〈 , 〉 on TM ⇒∃! dvol ∈ Ωn(M) with dvol(X1, . . . , Xn) =
1 for any oriented orthonormal basis X1, . . . , Xn of TpM . dvol = X∗

1 ∧· · ·∧X∗
n.]

Theorem 14.2 (Gauss Bonnet Theorem). On an oriented 2-dimensional man-
ifold with a metric, the equation K(TpM) = −Ω12(X1, X2) is equivalent to
Ω12 = −K · dvol. The Euler number of TM π−→M is

χ(TM) = − 1

2π

∫
M

Ω12 =
1

2π

∫
M

K · dvol

where χ(TM) is the Euler character of M .
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Example 14.2. M = S2(R) is the 2-sphere of radius R in R3.

χ(TS2) =
1

2π

∫
S2(R)

K · dvol = 1

2πR2
· vol(S2(R)) =

4πR2

2πR2
= 2

Example 14.3. Suppose the 2-manifoldM admits a vector field without zeroes.
Then

χ(TM) = 0 =
1

2π

∫
M

K · dvol

Corollary 14.3 (Hedgehog/Hairy Ball Theorem). S2 does not admit a vector
field without zeroes.

Example 14.4. M = T 2.

K < 0

K > 0

flow without stationary points

M an oriented 2-dimensional manifold,X ∈ X(M) a vector field with isolated
zeroes.

M connected, compact ⇒ X has finitely many zeroes p1, . . . , pk.
Choose disjoint open neighborhoods U1, . . . , Uk of p1, . . . , pk, with each Ui

diffeomorphic to a disc of radius 2 in R2 and Vi = D(1) in.
We equip M with a Riemannian metric, which restricts to each Ui as the

flat metric of Ui ⊂ R2.
On M \ {p1, . . . , pk}, define X1 =

X

‖X‖
with respect to our metric.
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Complete X1 to an oriented orthonormal basis {X1, X2} onM \{p1, . . . , pk}.

χ(TM) =
1

2π

∫
M

K · dvol

flat around poles
============

1

2π

∫
M\(

⋃
Vi)

K · dvol

= − 1

2π

∫
M\(

⋃
Vi)

Ω12

Stokes
====== − 1

2π

∫
∂(M\(∪Vi))

ω12

=
1

2π

n∑
i=1

∫
∂Vi

ω12

Claim 14.4. X∗
1dθ = ω12.

Proof. Notice that

X1 : S1 → S1

p 7→ X1(p)

X1
X2

dθ

dθ(X1) = 1

(X∗
1dθ)(Y ) = dθ((DX1)Y )

flat connection
=========== dθ(∇YX1) = dθ(ω12(Y )X2) = ω12Y

⇒ χ(TM) =
1

2π

n∑
i=1

∫
∂Vi

X∗
1dθ =

1

2π

n∑
i=1

deg

(
X1

∣∣∣∣
∂Vi

)∫
S1

dθ =

n∑
i=1

deg

(
X1

∣∣∣∣
∂Vi

)
︸ ︷︷ ︸
=Index(X1,pi)

This is called the Poincaré–Hopf Theorem.
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