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Preface

This script is mainly based on Prof. Dr. Dieter Kotschick’s course on Differential
Geometry for Ludwig-Maximilians-Universitdt in Munich in winter semester
2023-2024.

Motivation and Scope

Differentiable manifolds provide a unified framework for studying spaces that lo-
cally resemble Euclidean space but may exhibit complex global behavior. From
the curvature of spacetime in general relativity to the configuration spaces of me-
chanical systems, manifolds lie at the heart of many physical and mathematical
phenomena. This text focuses on developing the core concepts of smooth mani-
folds, tangent spaces, vector bundles, and differential forms—tools essential for
advanced topics such as Lie theory, Riemannian geometry, and cohomology.

While the material is rooted in pure mathematics, the techniques presented
here have profound applications in theoretical physics, including gauge theory,
symplectic mechanics, and string theory. Our goal is not merely to enumer-
ate definitions and theorems but to cultivate an intuitive grasp of the subject
through carefully chosen examples, historical context, and connections to adja-
cent fields.

Structure and Pedagogy

The book is organized into 14 chapters, progressing from foundational material
to advanced topics. Key pedagogical features include:

e Gradual Complexity:

— Chapters 1-2 introduce topological and differentiable manifolds, em-
phasizing local coordinates, atlases, and the “smooth invariance of
domain.”

— Chapters 3—6 explore tangent spaces, vector bundles, and their geo-
metric operations (e.g., pullbacks, metrics, and subbundles).

— Chapters 7-9 delve into dynamical systems (flows), Lie theory, and
the Frobenius theorem.

— Chapters 10-14 culminate in differential forms, integration, de Rham
cohomology, and connections.

o« Examples and Theorems:
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— Classical examples (e.g., spheres, tori, projective spaces) recur through-
out the text.

— Major theorems—such as Whitney’s Embedding Theorem, Sard’s
Theorem, and Stokes’ Theorem—are presented with detailed proofs.

e Visual and Algebraic Balance:

— Geometric intuition is prioritized through diagrams while maintain-
ing algebraic rigor.

— Exercises interspersed within chapters encourage active learning.

Prerequisites and Approach

Readers should be familiar with:
« Basic topology (open/closed sets, compactness, Hausdorff spaces),
« Linear algebra (vector spaces, dual spaces, multilinear maps),

o Calculus on Euclidean spaces (partial derivatives, inverse function theo-
rem).

Abstract definitions (e.g., vector bundles, differential forms) are motivated
by their classical analogs in R™. For instance:

o Tangent spaces generalize directional derivatives,
e Vector bundles formalize parameterized vector spaces,

o Differential forms unify integration and differentiation.

Philosophy and Innovations

Three principles guide this work:

o Accessibility: Technical machinery (e.g., partitions of unity) is intro-
duced only when necessary.

e Interconnectedness: Concepts reappear in new contexts (e.g., the tan-
gent bundle underpins flows and Lie derivatives).

e Modern Relevance: Applications are hinted at throughout (e.g., the
Frobenius theorem foreshadows foliations).
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This manuscript owes its existence to countless conversations with colleagues,
students, and mentors. Special thanks to the vibrant mathematical commu-
nity for their insights and encouragement. Feedback from readers is warmly
welcomed.



iii

To the Reader

“The questions are the breath of research,”

Hermann Weyl

Differential geometry is a journey—one that begins with coordinates and
curves and leads to the frontiers of modern physics. While the path is challeng-
ing, the rewards are profound. Approach each chapter with patience, revisit
examples often, and let curiosity guide you.

Xumin Liang
March 31, 2025
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Chapter 1

Topology

1.1 Topological Space

Definition 1.1. A topological space (X, Q) is a set together with open sets
O C P(X), s.t.

(1) @, X € O;
(2) Ul,UQGO:>U1ﬂU2€O;
B) U, €0,iel= JU; €0.

i€l
Example 1.1.
(1) O ={@, X} the trivial topology on X.
(2) O =P(X) the discrete topology.

(3) the metric topology on a metric space.

1.2 Metric Spaces
Definition 1.2. A metric space (X,d) is a set X together with
d: X xX = R(z,y) —dz,y)

s.t.

(1) d(z,y) > 0 with “=" if and only if = = y;

(2) d(z,y) = d(y, x);

(3) d(z,z) < d(z,y) + d(y, 2), Vz,y,z € X.

In the metric topology, a subset U C X is open if Vo € U, 3¢ > 0, s.t.
B(z,e):={y e X |d(z,y) <e} CU.

Terminology. Let (X, O) be a topological space.
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(1) VCc X isclosed if X\ V € O.

(2) x € X, W C X is a neighborhood of z in (X,0), if z € W and W
contains an open set U, s.t. x €e U C W.

(3) Ui € O,i € I, the U; form an open cover of X if | J,.,; U; = X.

Definition 1.3. A topological space (X, Q) is Hausdorff if Vzq1, 20 € X, 21 #
r9, AU, Uy € O, 8t. z; € U; and Uy NU; = &.

Example 1.2. The metric topology of a metric space is always Hausdorff.

d
Proof. Let z,y € X and & # y. Then d(z,y) > 0. Take ¢ := (562’ y), then
B(z,e) N B(y,e) = @ and = € B(x,¢), y € B(y,¢). O

1.3 Basis of Topology

Definition 1.4. A basis of the topology O is a B C P(X), s.t. every U € O
is a union of subsets in B.

Lemma 1.1. Consider R™ with the metric topology induced by Euclidean dis-

tance function )
n 2
d(z,y) = (Z(Sﬁz - yi)2>

i=1
There is a countable basis B C P(R")

1
Proof. Take B | z, 7 ) where x € Q", k € N. B consists of all these balls as =

ranges over Q™ and k ranges over N.
U C R™ open. Take z € U. Then 3¢ > 0, s.t. B(z,e) C U. Take

1
ye DB (ac,ga) nQ~".

2
Consider x € B <y, 36) cU.

1
d(z,y) < 3¢

1 2
Fix r € Q with 3¢ <r< 3¢ Then B(y,r) € B and B(y,r) C U. O

1.4 Topological Manifold

Definition 1.5. A topological manifold M of dimension n € N is a topolog-
ical space (M, O), s.t.

(1) (M,0) is locally homeomorphic to R (“locally Euclidean”);
(2) (M,0) is Hausdorff;
(3) (M, O) has a countable basis for O.
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Let (X,O0x) and (Y, Oy) be topological spaces.

Definition 1.6. A map f : X — Y is continuous if f~1(U) € Ox for all
U € Oy.

Definition 1.7. f is homeomorphism if f is bijective and continuous, and
£~ is also continuous.

Definition 1.8. (X, Ox) and (Y, Oy) are locally homeomorphic if every z € X
has an open neighborhood U which is homeomorphic to an open set in Y.

Example 1.3.
(1) M =R".
(2) M is a manifold = any open U C M is also a manifold.

(3) M is a manifold of dimension m and N is a manifold of dimension n =
M x N is a manifold of dimension m + n.

(4) S™:={x € R"*! | ||z|| = 1}. This is a n-dimensional manifold.

(5) T" = S* x ---x S* by (3) and (4).

n times

(6) Every surface is a 2-dimensional manifold.
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Differentiable Manifold

2.1 Charts

Locally Euclidean: Vax € X, 3U open and a homeomorphism ¢ : U — V C R™.
Define (U1, ¢1) and (Us, ¢2) as above. Then

homeomorphism

w2007 11 (U NUR) w2 (U1 NUL).

The (U;, ;) are called charts and fo; = @2 0 %—1 is the transition map from
the chart (Uy, 1) to the chart (Us, ¢2).

2.2 Atlas

Definition 2.1. A collection of charts (Us,¢;), i € I with |J U; = M is called
an atlas. We have the cocycle conditions/properties !

(1) fii=1d

(2) fij = fii* Vi g,k el

(3) fijfik = fir
The f;; for pairs ¢,5 € I with U; NU; # @ form the structure cocycle of the

given atlas
of = {(Uiﬂpi) | 1€ I}

Proposition 2.1. Let & be an atlas for M. From the collection of open subsets

Vi = ¢i(U;) C R™ together with the structure cocycle, one can reconstruct M.

Proof. M = (H V,») / ~, where ~ is the equivalence relation given by V; >
icl
p~q=filp) €Vj, Vi,j el
a: M — M

bl = @i ') ifpeV;
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If g € V; is equivalent to p, then g = f;i(p) = 97 (a) = 97 (g7 07 1)) =
©; '(p). So a is well-defined. a is also continuous.
b: M — M
m — [@i(m)] it meU;

If m is also in Uj, then ¢;(m) = (pj 0 p; pi(m) = fi(pi(m)). So b is well-
defined. b‘U_ = 7o ;, where 7 : [[ V; — M is the projection onto equivalent

i€l
classes. Thus b is continuous.
M % M b5 M
Pl = ¢ ') = i) =1[p) = boa=Idy
M Y5 M S M
m = [pi(m)] — go[lgoi(m):m = aob=1Idy

2.3 Differentiable Manifold

Definition 2.2. A smooth or differentiable manifold is a topological man-
ifold together with an atlas &/ for which f;; are smooth/differentiable.

i CcR® 2 R™
/f
wi(U; NU;) Jii @i (Ui NUj)

Smooth means C" for some r > 2.

Terminology. Such an atlas is called a smooth atlas. Two smooth atlases
@ ={(Ui,p;) |t € I} on M are equivalent if o7} Uo7 is also a smooth atlas.

oy = {(Up,¢)) | k€ I'}

2.4 Differentiable Structure

Definition 2.3. A differentiable structure on M is a maximal smooth atlas,
equivalently an equivalence class of atlases for the above.

Fact. Every maximal C" atlas contains a unique maximal C* atlas. Because
of this, we will only consider C*° manifolds.

smooth = differentiable = C*°

Definition 2.4. Let M and N be smooth manifolds, f: M — N is smooth if
Vp € M, 3 a chart (U, ) with p € U and a chart (V,¢) for N with f(p) € V
such that 1) o f o ¢! is smooth.
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I 1.Af =

@ w0f0@71
_
Rm RTL

Example 2.1. f: M — R is smooth if and only if f o ¢~
charts (U, ).

I is smooth for all

Definition 2.5. f: M — N is a diffeomorphism if it is bijective, differen-
tiable, and f~! is also differentiable.

Example 2.2. Every B(z,¢) C R" is diffeomorphic to R™.

Remark. Not every topological manifold has a differentiable structure. If it
has one, it may fail to be unique!

For n < 3, every topological manifold has a differentiable structure, unique
up to diffeomorphism.

For n > 4, there are manifolds with no differentiable structure, and there
are manifold with unusual non-diffeomorphic differentiable structures.

Example 2.3. The topological manifold R* has infinitely many distinct differ-
entiable structures.

Example 2.4. S7 has several distinct differentiable structures.

2.5 “The Smooth Invariance of Domain”

Differentiable atlas means that transition functions between charts are diffeo-
morphisms. The way we had defined differentiable manifolds, we assume that
we always have a fixed dimension, so we define a manifold of dimension n which
is locally homeomorphic to R™. Now we want to show that in the differentiable
case, functions as dimension given are actually redundant.

Take a manifold M. Assume we have two charts Uy, Us, and ¢1 : Uy —
Vi CR™ and @9 : U — Vo C R™.



CHAPTER 2. DIFFERENTIABLE MANIFOLD

N
- v few

Then we have a transition map fo; = g 0 <p1_1 s p1(U NU2) = w2 (U NT,).

If the transition map fi2, fo1 are diffeomorphisms, then m = n. Since

fi2 0 fo1 = Idy, (v, nu,) differentiate Dy() f12 0 Doy (2) f21 = Idrm
ANNANANAN
Ja1 0 fi2 = Idy, (. nuy) Dy, () f21 0 Dyy(a) f12 = Idgn

Both derivatives on the LHS are isomorphisms.

Dapl(z)fQI
Rm
Dy fr2
which implies
m=n

This is called “the smooth invariance of domain”.

Given a smooth manifold M with a smooth atlas (U;,p;), @ € I, we can
reconstruct M up to diffeomorphism just from ¢;(U;), i € I, together with the

structure cocycle given by the transition function f;;.
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Tangent Spaces and
Tangent Bundle

Let M be a smooth manifold and &/ = {(U;, ;) | i € I} a differentiable atlas.
All the p; take values in R™, n = dim M. Consider triples (z,i,v) € M x I x R®
with 2 € U;. On the set of such triples define the relation (z,4,v) ~ (y, j,w) by
r=yand Dy, (@;0 gp;l)(v) = w. Then

—_———

fii
(Dw(y)fij)(w) =v.
Claim 3.1. This is an equivalence relation.
(2,1,0) ~ (g, o w) ~ (,k,1)

r=y=z
Do, (2) frj © Dopi() f5i(0) = (Do () frj)w =

Do) fri

Let T'M be the set of equivalence classes, and

m:TM — M

[,i,v] — x

If AC M, then 7= 1(A) = TaM.

If A= {z}, then 7~1(z) = T, M, the tangent space to M at .
If A C M is open, then A is itself a manifold, and TA = T4 M.
For every chart (U;, ;), we have a bijective map

[l‘,i, ’U] = (‘pi(x)ﬂj)

TWU;NU;) —2 s 0,(U;NU;) x R® C R™ x R® = R2"
Twi 1
Tejo(Tei)™ (2,v) = (f5i(2), Dz f5:(v))
(pj(UiﬂUj> x R" C R™ x R" w
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We give each T'U; the unique topology which makes T'¢; into a homeomorphism.
This is well-defined. On T'M, we define topology by requiring each TU; to be
open, and itself have the topology defined via T'y;.

We consider & = {(TU;,Ty;) | i € I} as an atlas for TM. This has C*°
transition maps, and so values T'M into a C*° manifold.

With respect to this differentiable structure on T'M, the projection 7 :
TM — M is a differentiable map.

Lemma 3.2. For every x € M, the tangent space T, M has a well-defined
structure as a R-vector space of dimn.

Proof. Suppose z € U;, then Ty, : T.M — {pi(x)} x R™ is bijective.
Define the vector space structure O%Ag“mM to be the unique one that makes
T, a linear isomorphism. If x € Uj, then fj; : ¢;(U; NU;) — ¢;(U; N U;)
isa (fixff]vc{omorphism. The derivative is linear

Dtpi(x)fji :R"” — R™.

This is an isomorphism of the vector space. This shows that the vector space
structure on T, M defined using (Uj, ¢,) instead of (U, ¢;) is isomorphic to the
one gotten from Uj;. O

For every z € M, 7= 1(x) = T, M is a vector space.
Suppose f : M — N is a differentiable map between differentiable manifolds.

Define Df : TM — TN
[xuiﬂ)} = [f(ﬂf)»ZaD@,(x)(i/w o f o (p;l)(v)]
Suppose (Uj, ;) is another chart for M with z € U;.
[x,i,v] = [ZE, 7Dga,1(w)f]l(v)] = [f(x)vZ/HDcpJ(x)(y}Z/ Olf © (pj_l)DtpL(w)lf_]z(U)]
(Yofop; )ofj= (1w0f0<p; )o(pjop; ):wOff%’
Dy y(¥ofop; )oDy a)fii=Deyymy(¥ofop; )
In the same way, one checks that D f does not depend on the chart used for .

Df 2 TeM — Tpy N CTN is a linear map between tangent spaces.
Ty M

[:EJ,’U] — [f(i'?)ai/aD%(m)(i/w Ofo(le)(v)]
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Definition 3.1. D, f :=Df is the derivative of f at x € M.
T, M

10



Chapter 4

Paracompactness

4.1 Compact and Paracompact

Definition 4.1. A topological space (z, 0) is compact if every open covering
has a finite subcover.

Example 4.1.
o Compact {z}, [0,1], S, S™, T™.
o Not compact (0,1), (0,1], R, R™.

Definition 4.2. A topological space (X,0) is paracompact if every open
covering has a locally finite refinement.

Definition 4.3. Let {U; | i € I'}, be a collection of subsets in X. This collection

is locally finite if Vo € X, there exists an open neighborhood U,, s.t. U;NU, #

@ for only finitely many i € I.

Definition 4.4. Let U;, ¢ € I be a covering of X, i.e. |J U; = X. A refine-
=

ment of this covering is a covering by subsets Vi, k € K, such that Vk € K,

Ji=ik)el, st. V CU,.

Proposition 4.1. Let {U; | ¢ € I} be an open covering of a manifold M. There
exists an atlas & = {(Vi, %) | k € K} such that

(1) @r(Vk) = B(ag,3) C R™;

(2) Wi = ¢, ' (B(zy, 1)) form a covering of M;

(3) The Vj form a locally finite refinement of the covering by the U;.
Proof. Step 1: There exists a sequence G;, i = 1,2,... of open subsets on M
with G; C G;41 Vi, G; compact Vi, and fj G; =M.

=1
The topology of M has a countable basis consisting of open sets A;, j =
1,2,..., with compact closures G.
G1 = A;. Suppose Gy, has been defined as G, = A; U---UA;,. Let jri1 be
the smallest natural number for which

GrCAU---UA

Jk+1

11
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Define G411 := A1 U---UA
required by Step 1.

Step 2: Given the open covering of M by the U;, we can choose a chart
(Vi, @z) for every & € M, so that « € V,,, ¢,(Vz) = B(Yz, 3).

Let W, = ;1 (B(yz,1)). We may assume the V, form a refinement of the
U, ie. Vo, 3i =i(z), s.t. V, C U;.

Each set G}, \ Gr_1 can be covered by finitely many such W, i € {1,...,1},
such that, moreover,

‘/Zni C Gry1 \ ijk:——Z = Ggyr1 N (i\éf> \ iifkr__g ).

This sequence of Gy has all the properties

Jk41°

Gr—2 C Gg—1 C Gy C Giy1

Now let x € M = m € G;. Take G; \ G;_1. This will intersect only finitely
many V’s. So V,, are a locally finite refinement. O

Example 4.2. Let M be compact. Vo € M, 3 a chart of this form around =,
{W, | x € M} is an open covering of M. Because M is compact, dxq,...,x; €
1
M,st. | W, =M.
i=1

1=

4.2 Partition of Unity

Definition 4.5. Let M be a smooth manifold. Let {U; | ¢ € I} be an open
covering of M. A smooth partition of unity on M subordinate to the
covering {U; | i € I'} is a collection of smooth functions p; : M — R such that
pj = 0, Vj € J for which the supports of the p; form a locally finite refinement
of the Ui and Z P = 1.
j€J

Definition 4.6. If f : M — R is any continuous function, define supp(f) =
{we M| f(z)+#0}.

In the definition of partition of unity, we want supp(p;) C Us(j)-

Theorem 4.2. If M is any smooth manifold and {U; | ¢ € I} is any open
covering, then there is a subordinate smooth partition of unity.
Proof. First consider the following smooth function f: R — R.

1072
2
f(x)

o) = exp <33(331—1)> for0<z <1

0 otherwise
0.5

is a C* function, a bump function.

—0.5 0.5 1 15
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) / OO 7t dt

0.6

o) = T
JRX
R

0.2

is also C*°. -
—-0.5 0.5 1 1.5

Given the U;, construct an atlas in the proof of the Proposition 4.1 {(Vi, k) |
ke K}.
Define pi : M — R so that it is C*° and

1

Pk

Wy
pr =0
supp(pr) C Vi

The supports are thus a locally finite refinement of U; and s = > py is defined
keK
everywhere> 0.

— Pk —
Define py, := S’ kZ Pk
€K

1. O



Chapter 5

Submanifold

5.1 Submanifold

Recall M is a smooth manifold and U C M open = U is a smooth manifold.
We want a broader definition of submanifold, e.g. incorporating things like
S™ C R™M or

R2

Definition 5.1. A subset N C M, where M is a smooth manifold called a
submanifold if for every point p € N, there exists a chart for M, centered at
p, say (U, p), such that

o(NNU)={z1 ==z, =0}NeU) CR™
where dim M = m and k is some fixed non-negative integer.

Remark. Clearly, dimN =m — k < m =dim M.

5.2 Immersion, Submersion and Embedding

Definition 5.2. Let f: M — N be a map of smooth manifolds and p € M.
(1) f is called an immersion at p, if D, f : T,M — Ty, N is injective.
(2) f is called a submersion at p, if D, f is surjective.

(3) f is called an immersion/submersion, if it is an immersion/submersion
at all points in M.

(4) f is called an embedding, if it is an immersion and a homeomorphism
onto its image.

Example 5.1.

14
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(1) i:R™ — R" with n > m is an immersion (and an embedding).
(1, ., xm) — (T1,...,Zm,0,...,0)

(2) m:R™ — R™ with m > n is a submersion.
(T1, Ty Tt 1y e -+ Ton) > (T2, -0, Th)

(3) (a,b) - R? is an immersion but not an embedding.

Similarly, is an immersion but not an embedding.

Remark. If f: M — N is an immersion, dm M < dimN. If f: M — N is a
submersion, dim M > dim N.

Theorem 5.1. Let f: M — N be an immersion at p € M. Then, there exist
charts (U, ¢) around p and (V, ) around ¢ = f(p), s.t. o fop =t =i ,ie.

e (U)
o foo Ny, xm) = (T1,..,¥m,0,...,0).

Proof. Take charts (U, ¢o) around p and (Vj, 1g) around ¢. The Jacobi matrix
of oo foyy L at 0 has rank m = dim M by assumption. After reordering the
coordinates of 1, we obtain a new chart (Vp,v), s.t. for F = o fop 1

F;
(8 ) is invertible.
8xj i=1,..., m
Jjg=1,..., m
Now define G : p(Up) x R™*™ — R"
(mla"'vxm7xm+17"'ax’n) '—>F(x17...,xm)+(0,...,O,xm+17...,xn)

oOFEN\™
— *
DG = 0 ) ;i1 is invertible. By the inverse function theorem,

0 Id
we find

0€plU) € ¢lo) 0eyp(V) C (Vo)

open open

and a smooth function H
H: (V) — oU) x Uy

s.t. Go H =1d and H o G = Id where defined.
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i ] |n

Nowsetzﬁ:How,thenJJOngogl=HOF=HOGOi:i. O
Remark. We only needed to modify the chart for the target.
We also have

Theorem 5.2. If f : M — N is a submersion (m > n) at p € M, there are
charts (U, ) around p and (V, %) around ¢ = f(p), s.t. Yofop ™ (xy,...,2m) =
(T1,...,Zn)-

Proof. Take arbitrary charts (V, 1) and (Uy, o) around g, respectively p. After
reordering coordinates of ¢y, we may assume for F' = 9 o f o ¢y 1 we have

(aFi) is invertible. Define
8x j

ij=1
G(T1, o s Ty g1y o) = (F1(Z1, 0 Ty ooy Fr(@1, ooy T )y T 1y -+ Tom)
Then
oy
DoG: 8l‘j i,j=1
0 1d

is invertible, so we have a local inverse H (possibly shrinking the domain of
definition). Then set ¢ = G o o where defined. This gives

@bofocpfl:¢ofo¢aloG71:FoH:ﬂoGoH:W
O

Theorem 5.3. Let f : M — N be an embedding. Then f(M) C N is a
submanifold.

Proof. Let g € f(M). Because f is a homeomorphism onto its image, there is
a unique preimage p, s.t. f(p) = ¢ and a chart centered at g, say (V,), s.t.
f~Y(V) =U C M admits a chart ¢. Arguing as in the previous theorem, we can
assume (Yo foo N (xy,...,2,) = (T1,...,Tm,0,...,0), thus H(f(M)NV) =
{Tmi1 = =2, =0} Ne(V). O

Remark. Conversely, for any submanifold Z C N, the inclusion Z C N is an
embedding.
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5.3 Regular Value

Definition 5.3. Let f : M — N be a map of manifolds, ¢ € N is called regular
value if all points p € f~1(q) satisfy that D, f are surjective.

Remark. By a theorem of Sard, the set of regular values of a map is dense (in
N).

Fact (Sard’s Theorem). The set of regular values of a smooth map is dense in
the target manifold.

Example 5.2. If dim M < dim N,
 every point not in the image of f is a regular value (this always holds);
e every point in the image of f is not a regular value.

Example 5.3. Let f : R* % R~ D, f:R* > R
(@, y) = a-y I
(b,a) has full rank iff (a,b) # (0,0)

Theorem 5.4. If f : M — N is smooth and p € N is regular value, then
f~1(p) is a submanifold of M.

Proof. Let ¢ € f~%(p). Then by the local form for submersions, we find charts

(U, ), (V,%) around q, p, s.t. o foo Y(xy,...,2m) = (21,...,2,) is the
projection. But then (f~1(p)NU) ={z; =+ =z, =0} N (V). O

5.4 Whitney’s Embedding Theorem

Theorem 5.5 (Whitney’s Embedding Theorem). Every smooth manifold of
dimension n can be embedded into R?™.

Remark.

e In general, this dimension is optimal, e.g. non-orientable surfaces (RP2,
Klein bottle) cannot be embedded into R?® (but immersed). For particular
manifold, better bonds on the dimension are possible, e.g. S* x St < R3

Id
or R2 — R2,

« Any m-dimensional manifold can be immersed into R?™~%(™) where a(2m)
is the number at 1’s in the binary expansion of m.

We will only prove the following weaker version.

Theorem 5.6 (Weak Whitney’s Theorem). Every compact m-dimensional smooth
manifold can be embedded into R*™+1,

Proof. Let X be a compact smooth m-dimensional manifold.

Claim 5.7. X can be embedded into some R* for k > 0.
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Proof. Let {(U;, ¢;)}", be a finite atlas for X. Choose a partition of unity {p;}
subordinate to {U;} .
Next, define ¢ : X — R with k = n(m + 1)

p= (p1(p) - 1(); -+, pu(P) - on (D), P1(P), - -, Pu(P))
Then ¢ is an embedding. O

In fact, ¢ is injective: Let ¢(p1) = ¢(p2). Choose i, s.t.

pi(p1) = pi(p2) # 0

Then
pi(p1) - pi(p1) = pi(p2) - i(p2) = wi(P1) = pi(p2)
@, different
o pl = p2

D, ¢ is injective at all p € M:

Dy : T,X — Ty RF = R”
Dypo = (Dpp1 - 01(p) + p1(p) - Dpp1, - Dppn(p) + pn(p) - Dy, Dpp1, ..., Dppn)

Thus if (Dp¢)(X) =0 where X € T,X = (Dpp;)(X) =0, Vi
= pi(p)Dppi(X) =0, Vi

@, different
>

X=0
So D, f; is injective.

Lemma 5.8. If f : A — B is an injective immersion of smooth manifold and
A is compact, then f is an embedding.

Proof. We need to show f is a closed map.

If Z C A is closed A compact, 7 is compact

f continuous f(Z) compact
B Hausdorff f(Z) closed
O

Claim 5.9. If an m-manifold admits an injective immersion into R* with k& >
2m + 1, then it admits an injective immersion into RF~1.

Proof. The idea is to project onto a generic hyperplane.

Hyperplanes are described via their normal vectors: For [v] € RP*~! denote
by P, = {u € R¥ | (u,v) = 0} the hyperplane orthogonal to [v] and by
Ty RF — Py, the orthogonal projection.

Write (;5[1)] = T[y) © ¢o: X — RE-T,

Claim: For a generic choice of [v], ¢f, will be an injective immersion.

Assume ¢, is not injective, i.e. there are py # p2 € X, s.t. ép(p1) =
Prv)(p2) and so ¢(p1) — (p2) lies in the line [v], i.e. the points where ¢y, is not
injective live in the image of

(X x X)\ A, — RPF!
(p1,p2) = [9(P1) — H(p2)]
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where A, = {(z,2)}.
By Sard’s theorem, for a set containing an open dense set of [v]’s, ¢y, will
be injective.
Similarly, consider a [V], s.t. there exists p € X with D¢, not injective,
i.e. there exists 0 # A € T, X, s.t.  Dpgp (A) = 0 & (7 0 Dpod)(4) &
~——

Dy (my109)
(Dp#)(A) is contained in the line [V].

Remark. X C TX submanifold via z — (z,0).

i.e. the [v]’s, s.t. @[, is not an immersion live in the image of
TX\ X — RP*!
(p, A) = (Dpp)(A)

where p € X, A € T,X. Again by Sard’s theorem, the set s.t. ¢, is an
immersion, is open dense. O

Now take a [V] in the intersection of these dense sets. O



Chapter 6

Smooth Vector Bundles

6.1 Vector Bundles

Definition 6.1. A smooth vector bundle of rank k is a pair of smooth manifolds
E, B together with a submersion 7 : E — B, s.t. the following hold:

(1) for every x € B, the fibre 77 !(z) has the structure of a k-dimensional
R-vector space.

(2) B has an open cover {U; | i € I} and diffeomorphisms ; : 7=1(U;) —
U; x RF which restrict to linear isomorphisms on every 7~ 1(z), x € U; and
satisfy m o ¢; = .

E total space

7 (bundle) projection

~
[ ]

B base space

T~

U;

where 771(z) = E, is the fibre over z € B.

dimFE =dimB +dimE, =dim B + k

1-—>U><Rk

\/

20

UiﬂUj:Q.
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U:NU;) x RF <Y 71 (U; N U;) —2— (U; NU;) x RF

\/

Yot
(z,0) (2, v5i(z) (z)(v))
~——

€GLy(R)

UNU;NU, # D = v 0 vy = yj. Setting j = [ gives v;; = %}1. vii = 1d,
Vi € I. From the open covering of B by the U; and the transition maps +;;, one
can reconstruct the vector bundle 7 : F — B.

Definition 6.2. Let 7 : F — B, @’ : E/ — B be smooth vector bundles over
the same base B. An isomorphism of vector bundles is a diffeomorphism
f : E — E’ which is a linear isomorphism on every fibre and satisfy 7’ o f = 7,
i.e.

pE—1 L E

Example 6.1.

(1) Product bundles E = B x R¥, 7 = 7.

Definition 6.3. A vector bundle is trivial if it is isomorphic to a product
bundle.

(2) Let B = M be any smooth manifold, £ = TM is a vector bundle of
rank= dim M.

(3) Let B = Sl and take U1 X R, U2 x R. Then U1 n UQ = Vl (] ‘/2

Uy

Vi Va

Yij :U; N Uj — GLk(R) C Rk2 smooth
yz2 U1 NU; = V1 U Ve = GL1(R) = R* (R without origin)

1 forz eV
€T —
—1 forxz e Vy
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Construct E from this structure cocycle. Then E is the M6bius strip.

Rank 1 vector bundles over S': S' x R, TS', E = M. Then S! x R is
isomorphic to T'S*, but T'S* is not isomorphic to E = M.

Definition 6.4. Let 7 : E — B be a vector bundle. A section of F is a smooth
map s: B — FE,s.t. tos=1dp.

€k,

B s(x >
T

pe B

Lemma 6.1. A vector bundle E = B of rank k is trivial if and only if it
admits k sections s1,...,s; € ['(E) which are pointwise linearly independent,
where I'(F) = {s : B - E | mos = Idg} is a R-vector space and a C*(B)-
module.

Proof. First, assume F is trivial, and f : E — B xRF is an isomorphism. Define

si(z) == f~Y(z,e;) € T(E), where ey, ..., ey is any basis of R¥. Then sy, ..., sy
are pointwise linearly independent.
Second, suppose s1, ..., sk are linearly independent sections. Define

g:BxRF 5 E,
k

(1‘, ()\1, Ceey )\k)) — Z)\lsz(x)
i=1

This is a smooth map and satisfies w o g — Idp.
Moreover, ¢ is a linear isomorphism = x R¥ — E,, Vx € B. f:=¢ 'isa
global trivialization of F. O

1

Corollary 6.2. A rank 1 vector bundle is trivial if and only if it has a nowhere
zero section, i.e. 3s € I'(E), s.t. s(x) #0, Vo € B.

Remark. The zero 0 € T'(E) is the section 0: B — E . This is called the

r—0€k,
zero-section.

Let S C R? be the unit circle as the following figure shown.
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(z,y)=p

Then TS! € TR? = R? x R? and we have
7,8 =R (~y,z)
TS' = {(z,y,s,t) e R | 22 + y®> = 1,5 = —\y,t = Az, for some \ € R}

with the map

S

PN
TSt ———— &t

(@,y,81) — (z,y)
where s(z,y) = (z,y, —y, x).
Lemma 6.3. The Mo&bius strip M is not a trivial vector bundle.
Proof. Suppose M were trivial. Then let s : S' — M be a nowhere zero-section.
| —\
\5\_

U2 Uy xR U1 U1 Us xR U2
s is smooth hence it is continuous. The intermediate value theorem says it has
a zero. This leads to a contradiction. O

6.2 Metric

Definition 6.5. A metric on a vector bundle 7 : £ — B is a fibrewise positive
definite scalar product on F, which depends smoothly on = € B.

Smoothness can be checked/defined in one of two ways:

(1) With local trivialization:
Let ¢ : 7 1(U) = U x R*  be a local trivialization with z € U. A metric
U
B, = {y} xR
(', ) on E induces a scalar product { , ), on E,, which we think of as a
scalar product g, on R”, via the isomorphism E, =2 R, gy, 8s y varies in
¥
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U, gives a family of positive definite scalar products on R¥, dependency

on y.
g : U — V = symmetric bilinear forms on R*.
Y=gy
Smoothness of (, ) means that in every local trivialization, g is a smooth
map.

(2) Smoothness of ( , ) means that for any two si,s2 € I'(E), (s1,s2) €
C>(B).
(s1,82) : B—R

x> (s1(x), s2(x))
Proposition 6.4. Every vector bundle admits a metric.

Proof. Let {U; | i € I} be a covering of B by trivializing open sets for F,
Yy 7T_1(Ui) —U; x RF.

Fory € U;, let (, ); , be the scalar product on E,, obtained from the standard
scalar product on R¥ via the isomorphism 1 : E, — {y} x R*.

Let p; be a partition of unity subordinate to the covering of B by the U;.
Define (, ):=>p;-(, );. This is a metric! It satisfies }_ p; = 1. O

Remark. This proof uses positive-definiteness.

6.3 Constructions with Vector Bundles

(1) Subbundles

If 7 : E — B is a vector bundle of rank k, then a subbundle of rank [ < k
is a submanifold F' C E such that 7T|F : ' — B is a vector bundle of rank
l. For every x € B, FN E, = F, is a [-dimensional subspace of F, = R-.
Let m: E — B, ' : E/ — B be vector bundles and f : E — E’ a smooth
map with 7’ o f = 7 and f|E is linear for all x € B.

If rank(ﬂE ) is a constant function of z € B, then im(f) C E’ is a

subbundle of rank = rank(f) and ker(f) C E is a subbundle of rank =
rank F — rank f.

(2) Quotient bundles

If E is a vector bundle, F' C F a subbundle, the |J (E,/F}) is a vector
reB
bundle over B, called the quotient bundle.

(3) If E has a metric (, ), F* ={ve E, |z € B, (v,w), =0,Yw € F,} is a
subbundle, and F+ = E/F.

(4) Whitney sums
ES B, E 7y B are vector bundles.

E@® E’ — B is the vector bundle with (E® E’), = E, ® E., for all x € B.

Let {U; | i € I} be an open cover of B which is simultaneously trivializa-
tion for E and for E'. Let v;; : U;NU; — GLi(R), %(j :UiNU; — GLip/ (R)
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be the corresponding cocycles of transition maps. Then E @ E’ is the vec-
tor bundle of rank k + &’ defined by

U, N Uj — GLkJrk/ (R)

vij(z) 0 )
T
< 0 %{j(m)
(5) Dual bundles

If #: E — B is a vector bundle of rank k, the dual bundle £* — B is the
rank k vector bundle given by 7;;(z) € GLg(R) = Hom(RF, R¥).

AR - RF
A (RF)* = (RF)* defined by M (¢)(z) = o(A\(z))
Hom((R")*, (R*)*) 3 GLk(R) 3 vj;(x)
If F C F is a subbundle, then

FOFL=E
IR
F& (E/F)

Let G C GLi(R) be a subgroup.

Definition 6.6. A G-structure on a rank k vector bundle £ = B is a system
of local trivializations whose transition maps take values in G.

Remark. A G-structure is sometimes called a G-reduction.

(1) G ={e}.

In this case, a G-structure is a global trivialization.

(2) G = GL{(R) orientation-preserving isomorphism R* =, RF. In this case,
a G-structure on FE is an orientation for F, i.e. a consistent choice of
orientation for all F, varying smoothly =z € B.

The Mobius strip as a vector bundle over S' does not admit an orientation.
Lemma 6.5. A rank 1 vector bundle is trivial if and only if it is orientable.

Proof. If E is trivial, then it is orientable. Conversely, suppose E is orientable
and of rank 1. Then E has a G-structure for GL] (R) = R>°.

Qb

Yij : UiﬂUj —)R>O

Without loss of generality, all U;NU; are
either @ or diffeomorphic to bundles. R¥ R*
Then we can define the «;; smoothly to
be = 1. Then E is trivial since it has a
G-structure for the trivial group.

’}/U(I’) eENE R>O
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(3) G = O(k).
In this case, a G-structure is a choice of metric (, ) on E. Every E admits
such a G-structure.

(4) G = SO(k) = GL} (R) N O(k).

6.4 Pullback Bundles

Suppose f : M — N is a smooth map, and 7 : £ — N is a smooth vector
bundle over IN.

Definition 6.7. f*E := {(x,v) € M x E'| f(x) = w(v)} is the pullback bundle
of E under f.

That is the following diagram commute:

f*E "5 E
wll iﬂ'
M —— N

And we have

If E is a vector bundle of rank k over N, then f*E is a vector bundle of rank k
over M.

6.5 Bundles Homomorphisms
Definition 6.8. If 7 : E — M, g : F — N are smooth vector bundles, then

a homomorphism of vector bundles is a smooth map h : E — F', which restricts
to every E, C E as a linear map into a fibre of F.

E-—I",F
f(z) = g oh(v) for any v € E,. This 5 rp COMMute
is well-defined and smooth.

M T> N

Example 6.2. w5 : f*E — FE is a homomorphism of vector bundle.

Example 6.3. If f : M — N is any smooth map, then Df : TM — TN is a
homomorphism of vector bundle.
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Dwf T M — Tf(x)N

aNGT>

Let h : E — F be a homomorphism of vector bundles covering f : M — N.

h

/\F

E—— f*F —
RN

M —— N

Define h: E — f*F by h(v) = (7g(v),h(v)) € M x F. Then

m1(h(v)) = m(7p(v), h(v)) = Tp(v)

Df

TM —+ [*TN —— TN
M—1 N

Let N =R, then

M xR

y R

T™M —— f*TR —— TR

S

where Df : TM — M x R and TR = R x R, the first R represents
v = (77(”)’ (DW(v)f)(U))
E/—/

linear form in
tangent space

manifold and the second R represents vector space.
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If f : M — Ris smooth, then its derivative D f is a section in Hom (T M, M x
R) = T*M = (T'M)*. Three different interpretation of derivative of smooth
function:

Df:TM — TR Df:TM — M xR df € T(T*M)
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Flows

7.1 Velocity Vector

Let M be a smooth manifold, ¢ : R — M a smooth map. (c is called smooth
curve.)

Definition 7.1. ¢é(t) € To4)M is defined by

Dyc(1) = Dyc <§t>

where TR = R x R. This is the velocity vector of ¢ at ¢ (at c(t)).

0
(13 5)

Example 7.1. M =R", then c(t) = (z1(t), ...,z (t)).

) . . Ox Oz, " N
C(t) = (mla'“vxn) - (atl,---, ot > ETC(t)R =R

7.2 Global Flows
Definition 7.2. A (global) flow on a smooth manifold M is a smooth map
p:MxR—>M

satisfying the following properties:

o(z,0) =z
plp(z,t),s) = p(z,t + 3)

Write o(x,t) = pi(x), then

}VIGM, t,seR

wo = Id

B == (p) 7"
Pt ©Ps = Pt+s

Every ¢; is a smooth map M — M with a smooth inverse, so ¢; € Diff(M).
A flow ¢ defines a group homomorphism: R — Diff (M).

29
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Definition 7.3. X(M) :=I'(T'M) is the vector space of vector fields on M.

Given a flow ¢, we can define X € X(M) by

X, = (5am)| =00 (5)

where

If p = s(q), then

X, = (;%(@) . = <§t§0t+s(Q)>
0

= (({)twswt(q)))0

Lemma 7.1. The vector field X € X(M) obtained by differentiating a flow ¢
is invariant under De.

7.3 Local Flows

Let M be a smooth manifold.

Definition 7.4. A local flow on M is a covering of M by open sets U; and a
family of smooth maps 4

4,02 :U; x (—Ei,Ei) — M
s.t. ¢y =Idy, and ¢} o @’ = ¢}, whenever all 3 terms are defined.

Proposition 7.2. For every vector field X € X(M), there exists a local flow
{U; | i € I'}, p; such that

o .
—p; =X
at Spt(p) o p

whenever p € U;.
Proof. The statement is local in M, so we can work in a chart, so locally in R™.

Using coordinates in R™, we need to solve locally a linear system of ODEs with
C*® coefficients. This can be done! O

If U; NU; # @, then we require ¢i(z) = ¢l (z) for all z € U; N U; and
|t| < min{ei,sj}.
Given X € X(M), we can locally integrate X to get a local flow in this sense.

Definition 7.5. Two local flows are equivalent if their union is also a local flow.
This is an equivalent relation!

Proposition 7.3. There is a one-to-one corresponding between equivalence
classes of local flows on M and vector fields X € X(M).

(Ui, %), i€ 1~ X~ (Vj,¢7), j € J equivalent to (Ui, ¢?), i € 1.
X~ (V;,07), j €T~ X.
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Definition 7.6. A vector field X is complete if there is a local flow ' :
U; x R — M in the corresponding equivalence class.

Under the one-to-one correspondence in the Proposition 7.3, complete vector
fields give global flows ¢ : M x R — M, where ¢(x,t) := ¢*(x,t) if x € U;.

Proposition 7.4. If X € X(M) has compact support

supp(X) = {w € M | X(x) Z 0}
then it is complete.

Proof. Step 1: Consider a local flow (U;, ") for X, i € I. Since the U; cover
M, they cover supp(X). Since supp(X) is compact, there exist finitely many

k
Ui, say Uy, ..., Uy, such that supp(X) Cc U U;.
i=1
Let Up := M \ supp(X) C M.
open
Define ¢ : Uy x R — M, Va € Uy, t € R.

(z,t) »
Uo, U, ..., Uy, form a covering of M, and the pair (U;, ¢*), i € {0,...,k} are a
local flow for X. Set € := min{ey,...,ex} > 0.

0i(x) = pi(z) is defined for all z € M and all |t| < e.
Step 2: Let X be any vector field which admits a local flow (U;, ©") defined for
all times |t| < e. Then we can define @i, (z) ;==  @jo---0pi(x)

N times for all N€N, |t|<e

Ys+t = Ps 0 ¢ whenever both are defined. O
Corollary 7.5. If M is compact, then all X € X(M) are complete.

Example 7.2. Compact support is sufficient for completeness, but not neces-
sary.

0
—— # 0 everywhere
6331

0
Example 7.3. M =R"\ {0}, X = o # 0 everywhere
1

If p=(—s,0,...,0), s > 0, then ¢(p, )
is not defined for ¢t > s.
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Lie Theory

8.1 Lie Derivative

Let M be a smooth manifold, f € C>°(M) = C*>°(M,R) and X € X(M)
Definition 8.1. (Lx f)(p) = 0

&sﬁj(f)(p) , where ¢ is the flow of X.
t=0
_ 9 o o) — fleo(p))
= af(wt(p)) T lim ;
= pim LN 2SOy p(xp)) = a6 0)
X,/ #ip)
Dpf : Tp — Tf(p)R =R
1 14
dpf Ty M

The Lie derivative Lx sends smooth functions to smooth functions

Lx :C®(M) — C>®(M)
Lemma 8.1. Lx(f-g)=(Lxf)-g+ f-(Lxg) for all f,g € C>, where
f-g:M—-R

Like Leibniz rule in derivative (fg)’ = f'g + f¢’, we have

Dy(f-g) = (Dpf) g+ (ng)
We can see that

L : X(M) — Der(C=(M))

X — LX
Definition 8.2. If A is a R-algebra, then

Der(A) :={d: A — A|dis R-linear and d(a-b) =d(a) -b+ a-d(b)}

32
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If X € R, then Lyxf = ALx f, Vf € C*(M). In fact, for all g € C>*(M),

Lyxf=gLxf,Vf e C®(M). Moreover, Lx v (f) =Lxf+ Ly f.

Proof. Vp € M, we have

Lx (7 9)0) = 557 9) ()

= 55U sloo))|

= (Lxf)(p)-g9(p) + f(p) - (Lxg)(p)

t=0

O

Proposition 8.2. The map X(M) — Der(C*(M)) is an isomorphism of vector

X — LX
spaces.

Proof. (1) The map is linear.

(2) The map is injective: If X £ 0, then Ip € M, s.t. X(p) # 0. Consider
¢ : Upx(—e,€) = M be part of alocal flow of . 3f € C*(Up), s.t. f(pi(p)) =t.
After multiplication with a suitable bump function and extension by 0, we may

arrange f € C*(M). (Lxf)(p) = (gt ) =1,s0 Lx #0.

=0
(3) The map is surjective: Let A € Der(C"o( ))-

Step 1: If U C M is open, and f € C*°(M) is such that f‘ =0, then A(f)| =
U U

0. For z € U, take p € C>°(M) with p(z) =0 and gp' =1.
M\U
=o-f=f=A(f)=Ap)- f+A(f) ¢
= (Af)(z) = (Ap)(z) - f(2) +(ASf)(z) - p(z) =0
s o
0 0

Step 2: If there is an open neighborhood U of a point € M, such that
f’ =g| , then (Af)(z) = (Ag)(x). (Apply Step 1 to f —g.)

U U
Step 3: Let G, be the R-vector space of germs of C* functions at x € M. We
can define

A(z): Gy = R
(£ (Af)(z)
Step 2 says that this is well-defined. A(z) is a derlvatlon on the algebra Gy.
Using a chart, we may assume M = R", € R", A(x) = E )\ A(x) is

a tangent vector in T, M, and it depends smoothly on x. Deﬁne X € X(M) by
setting X (z) = A(x).
Thus, A = Ly. O

Lemma 8.3. For X, Y € X(M), there is a unique [X,Y] € X(M), s.t. LxLy —
LyLy = Lixy).
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Proof.

(LxLy — LyLx)(f-9)=Lx((Lyf)-g+f-(Lyg)) — Ly((Lxf) -9+ f-(Lxg))
= (LxLyf) g+ (LyfAEx9) + (Lxf}~Evg) + - (LxLyg)
— (LyLxf) -9 — (LxH—Evg) — (LyHH+Ex9) — [ - (Ly Lxg)

=(LxLy —LyLx)(f)-9g+ f-(LxLy — LyLx)(g)

Vf,g € C>®(M),so LxLy—LyLx is a derivation on C*°(M). By the surjectivity
in the Proposition 8.2, 3[X,Y] € X(M), s.t.

Lixy)=LxLy —LyLx

By the injectivity in the Proposition 8.2, this vector field is unique. O

Definition 8.3. [X,Y] is the Lie bracket of X and Y.
[, ]:X(M)xX(M)— X(M) is bilinear and skew-symmetric.

Lemma 8.4 (Jacobi Identity). [[X,Y], Z]+([[Z, X],Y]+[[Y, Z], X] =0,VX,Y, Z €

8.2 Lie Algebra and Lie Group

Definition 8.4. A Lie algebra g is a R-vector space, withamap [, | : gxg —
g, which is bilinear, skew-symmetric, and satisfies the Jacobi identity.

X(M) is a Lie algebra with the Lie bracket.

Definition 8.5. A Lie group G is a smooth manifold with a group structure

m:GxG— G
(91,92) = G192 = 91 - 92

s.t. mandi: G — G are smooth maps.
grrgt
Example 8.1.
(1) G = GLK(R) C Mat(k x k,R) = R¥".
(2) Subgroups of GLj(R) which are also submanifolds, e.g. GL} (R), O(k),
GLk((C) C GLQk»(R)
If G is a Lie group and g € G, then

left multiplication I, : G — G
h—g-h

right multiplication r4 : G — G
h—h-g
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are diffeomorphisms.

G—GxG@ —— 5 @G

h—— (g,h) }—>g~h:lg(h)

ly

l4-1 is also a smooth map Iy 0lj—1 = lj-1 01, = Idg.
For every g € G,
D.ly :T.G = T,G

is an isomorphism.
dimG =n, T.G=R"
GxT.G5 TG

(9,v) = (Delg)(v)

Lemma 8.5. This is an isomorphism of vector bundle, so T'G is trivial.

Proof.
GxT.G —— TG
G——(
t is smooth. D.l, is an isomorphism 7.G — TG for any g € G. O

Definition 8.6. X € X(G) is left-invariant if X (g) = (D.ly)X (e).

Lemma 8.6. If X is left-invariant, then (Dyln(X(g9)) = X(h - g).

Proof. ((Dyln)(Dely)(X(€))) = (Deling)(X(€)) = X(h - g)- O
Definition 8.7. g C X(G) is linear subspace of left-invariant vector field.

[, ] sends pairs of left-invariant vector fields to a left-invariant vector field.
= g C X(G) is a sub-Lie algebra.

Definition 8.8. g = L(G) is the Lie algebra of the Lie group G. dimg =
dim G.

Definition 8.9. X,Y € X(M). ; is the flow of z.

LY =2 ¥(0,)

5 7Y (pi(p) € Ty, (yM

t=0

:%%M%mwmm

i Pt (Y(t(p) — Y ()
t—0 t
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Define g(t,z) = /1 f(ts,x) ds, where f'(u,z) = of and f(u,z) = f(pu(z)),

0 ou
for any f € C*(M).

tg(t,z) = /01 flts,z) -t -ds= /Ot f(u,x) du, where u = ts
:f<t7x)_f<07x) :f(taaj)_f(x)

= f(tax) - f(:L') thg(t,x), Jop_t= f(ftvx)'
Claim 8.7. ¢(0,z) = (Lx f)(x).
Proof. 9(0,2) = lim g(t, ) = lim +(f(t,2) ~ F(x) = (Lx f)(x). =
Theorem 8.8. LxY =[X,Y], VX,Y € X(M).
Proof. Using the isomorphism of X(M) and Der(C*(M)), we need to prove
Liyvf=Lixy/f, fec>(M)
Let ¢ be the flow of X and f(¢t,z) = f(p(x)) with g(0,2) = Lx f.
= f(x) +1tg(t, x)
LY-LXf = LYg(07 _) = tlg% LYg(ta _)

2= (D 2oV (0)(p) ~ Y (9)), 50 that

LY = lim Z,
—
. .1
Liyvf= tlg%thf = }g% ;(LDwtwt(Y)f —Lyf)

o1
= lim —(Ly(p_y(-)(F 0 9-t) = Ly f)

1
= lim =~ (Ly (o o)) (f — t9-t) = Ly p) f)

t—0

1
= lim E(LY(%@))('}C —tg_¢) — LY(p)f)

1 .
= lim = (Ly (o (- f = Ly () f) = I Ly 4, ()9
=LxLyf—LyLxf=Lixyf

=

Theorem 8.9. Let X,Y € X(M), ¢, ps flows for x respectively Y. Then
[X’Y} EO <~ SDtOSDS :@Sogoh vs7t

Proof.
“ <: ki

Y, Ps commuting means that ¢; maps ¢s(p)
fzinghne(s;)f Y}tfo flowlines of Y. 0501 (p) = @r0s(p)
Pt =1r.

X, Y] = Lx¥ = lim - (Dy(¥)-Y) =0 )
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“=" For p € M, consider
v(t) = Dy, n—tY (pe(p)) € T,M

(1) = ol = (@) = (X Y]0) =0

0
Take p = 14(q), then a—p =Y.
s

%@t(l’) = (D) (gi) =Dp(Y) =Y

since v(t) is independent of t. So @¢(1s(q)) is a flowline of Y starting at
p = ¢¢(q) at time s = 0.

By the uniqueness of the flowline of Y through p, we have
Prhs(q) = ¥s(p) = ¥s(e(q))
pt 0 s = s o p; whenever both sides are defined.
O
Theorem 8.10. Let Xq,..., X, € X(M), s.t. [X;,X;] = 0 for all 4, j, and
X1(p), ..., Xk(p) are linearly independent in T, M for all p € M. Then around
for all

0
every point p € M, there is a chart (U, ¢), such that Dyo(X;(q)) = Ee
iand all g € U. '

Proof. The problem is local, so we may assume M is R".

After a linear change of basis for R”, we may assume X;(0) = for

6.’1%‘
ie{l,...,k}. So X1(0),...,X(0), 33324—17 Ry . is a basis for R" :vTORn.
3 open neighborhood U of 0 in R™ and an € > 0, s.t. the local flows ¢* of X;
are defined for all (p,t) € U x (—¢,¢). Define f: U — R"™ by

flae,...,z,) = <p§(1 mp%Q o~-~ow’;(k(o,...,o,xkﬂ,...,xn)
Without loss of generality, this is defined for all (z1,...,2,) € U. By the
assumption [X;, X;] = 0, the ¢ and ¢/ commute.
f is smooth and

of o\ _ . . o v _ %
oz, (0) = X;(0) forie {1,...,k}, We also have oz, () = X;(z)
of oy _ 9 :
oz, 0) = oz, for all ¢
f(0)=0
f(0) :% 5
Z )= fori> .
DOf(@:z:,;) oz, fori>k+1

For any z € U, we have D, f (g) = X;(f(z)) for i < k.

If U is small enough, then f: U — f(U) is a diffeomorphism. Define ¢ := f~1,
Dyp(X;) = 88 for all p € f(U). O

X




Chapter 9

The Frobenius Theorem

9.1 Integral Submanifold

If M™ is decomposed into k-dimensional manifolds L* € M which are the image
of injective immersions, the ¢ : L — M and (D,i)(T,L) is a k-dimensional
subspace of Tj,) M.

Suppose that E C T'M is a rank k subbundle.

Definition 9.1. A submanifold S C M is called an integral submanifold for
Eifvpe s,
(Dpi)(T,S5) C Ep

Definition 9.2. F is called integrable if through every point p € M, there is
a k-dimensional integral submanifold for F.

9.2 The Frobenius Theorem

Theorem 9.1 (Frobenius Theorem). For a rank & subbundle E C T'M, the
following are equivalent:

(1) E is integrable.
(2) T'(FE) is closed under [, ].

(3) there is an atlas (U;, ¢;) for M, i € I, such that Vp € U;,

0 .
(Dp@z)(Ep) 2> e for je{1,...,k}
Lj

Proof. (3)=(1): Let (U, ¢) be a chart as in (3). In ¢(U), the slices given by

Tk+1 = Ck+1y---,Tn = Cp

1

are k-dimensional integral submanifold of Dy(E). Applying ¢!, we obtain

k-dimensional integral submanifold for £
U

38
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(1)=(2): Let L C M be a k-dimensional integral submanifold for E through
pe M. If XY € I'(E), then there exist unique X,Y € X(L), s.t.

[X,Y](p) = [Di(X), Di(Y)](p) = (Di[X, Y])(p) € E}
The second equlity is by the following claim:
Claim 9.2. f: M — N is a smooth map, X,Y € X(M).

Dy f(IX,Y(p) = [DF(X), DF(Y)](f(p))
Proof. Let h € C*(N).

(Lpgx)h)(q) = Dgh(Dy f(X(p)))
= Dp(ho f)(X(p))
= (Lx(ho f))(p)

Note that ¢ = f(p). So
(LDf(X)h)Of:Lx(hof)

Then
Lipsx),prornh = LprxyLpriyyh = LosiyyLpgx)h
= Lx((Lpsyyh) o f) — Ly ((Lpgx)h) © f)
= LyLy(hof)— LyLx(ho f)
= Lix,yj(ho f)
= Lpysix,yv)h
Thus,

[Df(X), Df(Y)] = Df[X,Y]
O

(2)=(3): Proving (3) is a local problem, so we may work on an open neighbor-
hood U of 0 in R".
Step 1: Consider the projection 7:U—=RF

(@1, ooy ) = (21,...,28)

Suppose that Dy is an isomorphism. Then we may assume D,m is an

Eo E,
isomorphism for all p € U.
Step 2: After a linear change of coordinates on R™, we may assume that

D07T

is an isomorphism. By Step 1, the same is then true for all p € U.
Eo
Step 3: Let U and 7 be as above. Fix z; € F(E’U), so that

Dr(z) = fori e {1,...,k}

9
61‘i
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Then zi(p),...,zx(p) are a basis of E, for every p € U. By (2), we have
[zi, 2;] € T(E). Then

Drlzi, 2] = [Dr(zi), Dr(z5)] = { o ]

By injectivity of Dr| , we conclude [z;, z;] = 0.

E
Step 4: Since z; pairwise commute, there are local coordinates, s.t. z; =
O

Bxi ’

9.3 Foliation

Definition 9.3. Let M be a smooth n-dimensional manifold, 0 < k < n.
A k-dimensional foliation F of M is a decomposition of M into k-dimensional
injectively immersed manifolds which is locally trivial in the following sense:
Vp € M, 3 open neighborhood U and a diffeomorphism ¢ : U — R™, s.t. the
intersections of injective immersed manifolds making up F with U are mapped
by ¢ to the slices
LTl = Ck41y-+-3Tn = Cn

A subbundle £ C TM is integrable if and only if E consists of vectors
tangent to the leaves of a foliation, this is true if and only if T'(F) is closed
under [, |.

Example 9.1. Every rank 1 subbundle £ C T'M is integrable to a 1-dimensional
foliation.

Example 9.2. k = 2, locally F = span{z,y}. Then
Integrate x to get 1-dimensional integral submanifold for E.
Integrate y to get 1-dimensional integral submanifold for E.

Example 9.3. M =72 =51 x §! = = ([0,1] x [0,1])/ ~

E C TT? spanned by aﬂ + b2 =X
ox Jy

If a/b € Q, then all flowlines of X are periodic, so = S*.
If a/b ¢ Q, then all flowlines of X are = R, and are dense in T2.
Let T; = S' x D2, then S% = R?U {0} = T} U Ts.

Reeb Foliation of S2



Chapter 10

Differential Forms and
Multilinear Algebra

10.1 Differential Forms

M is a smooth manifold, dim M = n.

Definition 10.1. A differential form of degree k, or a k-form, is a C>°(M)-
multilinear map

wi:X(M)x - xX(M)—C®(M)
(Xl,...,Xk)O—)w(Xh...,Xk)
with the property
w(XO'(l)v s 7X0'(/€)) = Sign(g) : w(Xla s an)

sign(o) = %1 according to whether the number of transpositions in o is even or
odd.

Lemma 10.1. w(Xy,...,X%)(p) depends on X; only through X;(p) = w(p) :
TpM x T,M — R is k-multilinear.

w(p)(Xa(l)(p)ﬂ s 7Xd(k) (p)) = Sign(a)w(p) (Xl (p), oo 7Xk(p))> w e F(Ak)
Proof. We only have to prove the Lemma for i = 1.
Step 1: Suppose there is an open set U C M, s.t. X;1| =0. Let p: M — R

U
be a smooth bump function with p(p) = 1 for a fixed p € U and supp(p) C U.
Then p- X; =0.

0=w(pX1,Xa,...,. X)) =p - w(X1,....,. Xx) = wX1,...,Xp)p)=0

Step 2: Suppose p € M is such that X;(p) = 0. Using a chart (U, ¢) around
p, we can write

X1

n a -
U_;fjﬁf fiec>=()

41
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Let p: U — R be a C* bump function with p| =1 for V C U a smalleer

v
neighborhood of p and supp(p) C U. Then p- f; € C*(M) and p- f;| = f;.
v
0 0
Similarly, Y; = p - a—e%( ) and Y; Ea— Then YV := Z(p-fj)~Y €
j=1
X(M) has the property that Y| = X; (X, )| =0, so by Step 1:
v v v

w(X1 =Y, Xa, ..., Xp)(p) =0
= w(Xl — }/,XQ,. . ,Xk)(p) = w(Xh. . .,Xk)(p) —W(Y7X2, N 7Xk)(p)
w(Y, Xa, ..., X Z:: p- 1) (®) w(¥j, X, ..., Xp)(p) =0

=0, because f;(p)=0 since Xi(p)=0
= w(X1,...,X;)(p) =0 wherever X;(p) =0

Step 3: Suppose X1, X| € X(M) with X;(p) = X{(p). Then applying Step
2 to Xy — X, we see

w(X1,. ., Xp)(p) = w(X1, Xo, ..., Xk)(p)

10.2 Excursion into Multilinear Algebra

Let V, W be (finite-dimensional) R-vector spaces.

Definition 10.2. A tensor product for V and W is a bilinear map

p: VW —T

|
3!f linear
Z

(Universal property of tensor product), where T is a R-vector space, such that
every bilinear map f: V x W — Z factorizes uniquely through ¢.

Theorem 10.2. A tensor product exists, and is unique up to unique isomor-
phism.

Proof. Uniqueness: Suppose @; : V x W — T;, i = 1,2 are two tensor products
satisfying the universal property.

VxW o1 VxW 5T
<P2J/ / S‘”J{ /
Pqy linear P, linear
T2 T2
P2 =Py o1 P1 =102

0 and similarly S
= P2 0P P2 =P10P20¥1
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VxW 25 T
Wl Similarly @, 0o @, = Idp,
P0p, =ldT,
T

= the @, are isomorphisms inverse to each others.
These are the only choices of isomorphisms between the T;, which make the
triangle commute.

Existence: Let X be the R-vector space with basis V. x W. Let Y C X be
the subspace generated by elements in X of the form:

(avy + bug, w) — a(vy, w) — b(ve, w) and (v, awy + bws) — a(v,w1) — b(v, ws)

where T':= X/Y is the quotient vector space. The coset of (v, w) will be denoted
v w. Define ¢ : V x W — T by

(v,w) —»vRwW
Claim 10.3. (T, ) is a tensor porduct of V and W.

Proof. 1. ¢ is bilinear

p(avy + bug, w) = (avy + bvg) @ w

=av1 W + avy  w

So ¢ is linear in the first argument. Similar argument for the second argument.
2. Given a bilinear f : V. x W — Z, define f(v ® w) := f(v,w), and
extended linearly to 7. Then f : T' — Z is a well-defined linear map. Moreover,
fop(v,w) :f('l}@lﬂ) = f(v,w), s0 f = fop.
3. Given f, the f in 2 is unique. Suppose g : T — Z is any linear map with
f=gop. Then

flvow) = fv,w) =g(vew)
Since the v ® w span T', we conclude f = g. O

O

From now on, we write 7' = V @ W and ¢(v,w) = v ® w for the unique
tensor product of V' and W.

Suppose v1,...,v, € V and wy,...,w, € W are basis of V respectively W.
Then v; @ wj, 1 € {1,...,n}, 7 €{l,...,m} is a basis of V@ W.

dim(V W) =dimV - dim W
VxW 25 VeWw

| 5

The space of bilinear maps from V x W to R is (V @ W)*.
If Vi,...,V} are finite-dimensional R-vector spaces, there is a unique tensor
product V; ® -+ - ® Vi, which has the universal property for k-linear maps:
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XVk*>V1 Vk

fl
3! linear

For a single R-vector space V' denoted

T"V)=V® eV

k factors

Let T9(V) =R and T'(V) = V, then the tensor algebra of V is

T(V)=T(V)= é T*(V)
k=0

The multiplication in this algebra is induced by
V1 RU2R QU W QW2 R - Quw; =1 X QU QW1 X+ - - Rwy, vi,w; €V

Then - is written ® and T*(V) x T' (V) 25 TF+1(V).

10.3 Exterior Algebra

XV —— TFV)

fl / , where k is multilinear.

Conslder only skew-symmetric f, so that
J(Wo(1), -+ Vo(r)) = sign(o) - f(vr,...,vg)

XV £ AR(V)

fl/

=Pt

k>0
U
A the ideal generated by v1 ® va + v9 ® v1,v; € V the “alternating ideal”
Il

@ AF where AF = AN Tk(V)

k>0
A =0
Al =0

A2 =span{v; @ v +v2 @ vy | v; € V}
M
T%(V) = span{v; @ va | v; € V'}

Ak =span ] TUV)@A2@TP(V)
p+q+2=k
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Definition 10.3. T*(V)/A := A*(V) is the exterior algebra of V.

Suppose f is skew-symmetric. Then

f(v1,v2) = —f(va,v1)

= Flor ®va) = —f(v2 @ v1)

=1 f(U1®UQ+U2®Ul):O

Lemma 10.4. A k-multilinear map f:V x --- x V — Z is skew-symmetric if

=0.
Ak:

and only if f

f is k-multilinear and skew-symmetric

VX x Vo —E2s THV) —Zs TH(V)/AF = AK(V)

fl 7

Z

||

AV) =P AkW)

k>0
Let dimV = n, and vy,...,v, is a basis of V. Then v;, ® --- ® vy, 7; €
{1,...,n} form a basis for T#(V'). And dim T*(V) = n*.
[Vo(1) ® -+ & U] = sign(@)[vn @+ @ vy in AX(V)

If we have two repeating indices, we are going to have zero, because v; ® v; +
&7 € A% So if you have two indices which are the same, then the cor-
responding elements in the exterior algebra is zero. For those the indices are
different, then you can use this equation to just put them in a sending order,
whatever their order have here, up to sign, it is just this. Then we are done.

[vi;, ® Ui, @+ Ry, ] 1 <iy < i < --- < nform a basis for A¥(V)
I

’Uil/\’()iz/\"'/\’l]ik

So we think of the exterior algebra as the quotient of the tensor algebra, we don’t
usually write elements in this quotient as cosets this bracket, we just write like

this. It says
dim A*(C) = (Z)

That specify all the spaces. So in particular,
AF(V)=0ifk>n

So this graded algebra actually stops after the degree n. That was not the
case for the tensor. The tensor algebra has arbitrary many elements and tesor
algebra has a vector space over R is infinite dimension. But since the spaces
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vanish in the degree larger than n for the exterior algebra and these space are
finite dimensional, the whole exterior algebra is finite dimension. So

dimA* (V) =Y (Z) — (141" =2"

k=0

Let us consider something about the induced map of tensor products or
exterior products. This is kind of functoriality properties of this instructions.
First of all, suppose f; : V; = W; are linear maps.

Vi® Vs i) W1 ® Wy is a linear map
v1 @ v > fi(wr) @ fa(ve)
where v1 ® v9 are called decomposable elements of V; ® V5. What we do is we've
constructed the tensor product. It is obviously spaned by these decomposable
elements. Then the general element is not decomposable, but it is a linear
combination of decomposable elements. Because the decomposable once are
spanning set, you can make of this definition. Same thing works for the exterior
algebra, if V; is the same as V5. Using these constructions, every linear map
f:V — W induces an algebra homomorphism
T(f): T(V) = T*(W)
v1®...®vk Hf(vl)®.f(vk)

Similarly,

A(f) : A*(V) = A" (W) is an algebra homomorphism
v A Avg = fon) A A f(vg)

What has this happened to do with determinant? Let dimV = n and
f:V — V is linear, then

A™(f) : A™(V) = A™(V)
where A"(V) is 1-dimensional.

Claim 10.5. A"(f) is multiplication by det(f).

XV —— AR(V)
fl/

where f is k-linear nad skew-symmetric. The space of k-linear skew-symmetric
maps f:V x---V — R is naturally (A¥(V))* = A¥(V*). Then Ay A--- A X\, €
AF(V*) acts as a linear map A¥(V) — R by (M A=~ AXM)(v1 A Avg) =
Z sign(o)A1(ve(1)) - - - Ak(vs(K)) € R. For instance,

k=2 ()\1 A\ )\2)(1}1 A\ ’02) = )\1(1}1))\2(1)2) -\ (’Ug)/\z(?]l)
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10.4 Multilinear Vector Bundle Theory

Ifw:X(M)x - xX(M) — C>®(M) is a differential form of degree k on M,
then
w(p) : TyM x---xT,M =R

is well-defined, k-linear and skew-symmetric.

= w(p) € AT M

Instead of saying for A*T* M, more generally, that in fact the multilinear con-
struction we have done are extended from vector spaces to vector spaces. Vector
space is a vector bundle over the points. To replace the points by arbitrary man-
ifold, essentially, everything was the same. As an example, we will define tensor
for vector bundles. Let E =2 M, F =2 M be two smooth vector bundles of
rank k and [, respectively. We can find an open covering {U; | i € I} of M, so
that on each U;, both E and F are trivial.

(Vo ng(Ul) — Uz X Rk
Vi mmt (Us) — U x R

where these are local trivialization. Now the question is do this local definitions
fit together properly, you have something is well-defined independently to your
local trivialization? U; x (R¥ @ R!) represents E ® F over U;. If U; N U; # @,
then
pjop;t 1 (UNU;) x R - (U; nU;) x RF
(P ) = (P, 9i(p) - v)
where g¢;; : U; NU; — GLg(R). Similarly,

by oy (p,v) = (p, f:(p) - v)
for smooth f;; : U;NU; — GL;(R). Consider gj; ® fj; : U; NU; = GLj.(R)
P g5i(p) ® fii(p)
by
(95i(p) @ f5i(p)) (v ® w) = g;i(p)(v) @ fji(p)(w)

where g.+« ® fix is a cocycle, and E ® F is the corresponding vector bundle of
rank k- [, trivial over each U;. This is how using cocycles to define make precise
that the vector bundle E ® F' is the fibrewise tensor product of the fibres E and
F. Fibres of E and F' form the vector spaces and over every point is just take
the tensor product of the fibre.

Now we want to extend this and we are not doing with for the tensor algebra,
because tensor algebra is infinite dimension and we don’t want to speak of
infinite rank vector bundles.

Given a single vector bundle £ — M, we can use this construction to define
T™(E) — M for every m > 0. This descends to a definition of A™(E) — M by
taking the quotient bundle T (E)/A™.

For example, let E, F be vector bundles over M, and f : E — F a homo-
morphism of vector bundles. Then

T(f): T™(E) = T™(F)
AT (f) : A(E) = A™(F)
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are also homomorphism of vector bundles. I said the differential forms has a
value a the point which is an element of A¥T*M. Now we have constructed this
vector bundle and apply this to the cotangent bundle.

f*E—— F

| | FA™(E) = A B)
M f} N

We have now defined A¥T*M, and T'(A*T*M) are differential forms of degree
kon M.

Now we want to apply the above discussion to differential forms. Suppose
f: M — N is a smooth map. Then f*(A*T*N) is a vector bundle over M. If
w € T(A*T*N) = QF(N) is a k-form on N, then we define f*w as follows

(ffw)(Xq,..., Xg)(p) = w(f(P)(Dpf(X1),..., Dpf(Xk))
This is a k-form on M.

™ 2Ly e —— TN

~ 1 |

MﬁN

(DY : (f*TN)* - T*N

———

=f*T*N

AF((Df)*) : A*FT*N — AFT*M
———
—f*AFT*N
Now we can say the following:
(f*(@)(p) = A (Dpf) w(f(p)

where the derivative of p at f is a linear map

Dpf : TpM — Tf(p)N

Here we doing this not from the cotangent space, but on the exterior products.
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Integration of Forms

11.1 Orientation

To discuss the application of the smooth linear algebra of vector bundles, we
have the following proposition.

Proposition 11.1. Suppose E = M is a smooth vector bundle of rank k.
Then the following are equivalent:

(1) E is orientable.
(2) A*E is orientable.
(3) A*E is trivial.

Proof. A*E has rank (Z) =1

(2)<(3): we proved before for arbitrary rank 1 bundle.
(1)&(2): By definition, F is orientable if and only if 3 system of local
trivializations (U;, ¢;),
i Y (U;) = Uy x RF

for which all ¢, 0 ;! are orientation-preserving on {p} x R¥ for all p € U; NU;.
(pjoapi_l : (UZQUJ) XRk — (UlﬁUJ) XRk
(p;v) = (P, gji(p) - v)

where g;; : U; NU; — GLg(R). So all gj; takes value in GL; (R) C GL(R) <
det g;;(p) > 0 for all p € U;NU;. (Ui, A*p;) form a system of local trivializations
for A¥E, whose transition maps are det g;;(p). So if (1) holds, then (2) follows.

For the converse, choose an open covering of M by U; such that both F and
A*E are trivial over all U;.

Proof. Over each U;, we have trivializations

@i Y(U;) = U x RF 7:FE— M
Vi s (7)) 7HU;) — Uy x RF 7 AYE - M

49
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If (2) holds, we may choose the v;, so that all ¢; ot);” L are orientable-preserving
on R. ‘
E, £ {p} x R

k.
ARE, 2% L xR
ARE, 25 (p)} xR

By composing ¢; with a reflection in a hyperplane in R¥, we may assume that
A*; and ¢; define the same orientation on AkEp.

Since the v; have orientation-preserving transition map by assumption, the
same is now true for the ¢;, so (2)=(1). O

O

Remark. E* is (non-canonically) isomorphic to E.
If {, ) is a metric on E, then

f:E—=E”
v = (v, —)

is a bundle homomorphism which is an isomorphism.

Definition 11.1. A smooth manifold M is orientable if TM — M is an
orientable vector bundle.

Definition 11.2. A volume form on M is a differential form w € T'(A"T* M)
where n = dim M, s.t. w(p) # 0, Vp € M.

Corollary 11.2. For a smooth n-dimensional manifold, the following are equiv-
alent:

1) M is orientable.

2) A™T'M is orientable.

3) A™T'M is trivial.

4) M admits a volume form.

(1)
(2)
(3)
(4)
Let QF(M) = T(AT*M). When k = 0, Q°(M) = I'(M x R) = C>°(M). We
define d:C®(M) — QF(M)
fedf

where

(df)(p) : T,M — R
x+— D, f(x)

Lemma 11.3. Let ¢ : M — N be a differetiable map, f € C>*(N). Then
©*(f) = fopand ¢*(df) = d(¢*(f)). So ¢*od=doy"
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Proof. Let X € T,M.

(p*df)(X) = df (Dpp(X))
( w(p)f)(D
Dy(fop)(X

Dy (" (f))(X)

( “(NX)

p(X))
)

O
Let U C R™ be open, f € C*.
df (X) = Df(X)
8 0 .
At every point p € U, form a basis of T,,U
Oz’ Oy,
- 0
X = i—
;;;A 8$i
Let dz1,...,dx, be the dual basis of T; M
Claim 11.4. df = E 3
Proof. For all X, we must have df(X) = Df(X). Take X = 88 . Then
x;
0 0 of
d =D = .
zn: 7f 0 6f da; g\ of
Ox; dr; £~ Oz ; dx;) Oz
: ]:1
O
w = Z fil ’’’’ in dmil/\-n/\d:vik EQk(U)
1< < <ip<n
Define
dw = Z (df“ ’’’’’ Zk) A d(Eil JANEERIAN delk S Qk+1(U)
1< < <ip<n
Claim 11.5. d? =0, so d(dw) = 0.
Proof.
fz,
d(dw) _dz Z d Adzi, A -+ Adg,
—ZZ 9 fl] drg Ndxo ANdx;, A -+ Adx;,
X axg
ij a,f=1
8fi
:ZZ J drg Ndxo Ndziy A--- Adxy, =0

ox 6x5

i a<p
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O

Lemma 11.6. Let ¢ : M — N be a differentiable map, w € QF(N). Let
M, N C R™ be open subsets. Then dp*w = p*dw.

PT'OOf, w:Zfll ..... dey’u/\/\dyzk
i

dp*w =dY @ (fir, i)™ (dyi) Ao A @7 (dys,)

]

=dY 0 (firin)A@ Y ) A A (97 Yi,)

=Y e (firi) A Yi) A AN (97,

&

=" | Y dfir. i Adyi, A Ny, | = @"dw

i
Claim 11.7. If w € QF(U) and n € QY(U), then d(wAn) = dwAn+(—1)kwA(dn).
If k=0, then w = f € C>°(U). This formula becomes

d(fn) = df An+ fdn

11.2 Exterior Derivative

Definition 11.3. An exterior derivative on a smooth manifold M is a R-
linear map d : QF(M) — QF+1(M) for all k with the following properties:

1) If k = 0, then df(X) = Df(X).

)
2) dlwAn)=dwAn+(—1)%“u Adn.
) d2 = 0.
)

(
(
(3
(

4) d commutes with pullback by differentiable maps.

(5) If U € M open, then (dw)| depends only on w
U U

Theorem 11.8. There exists a unique exterior derivative d on smooth mani-
folds satisfying (1)-(5).

Proof. First uniqueness, then existence. (“O-form wedge a k-form is just O-form
(=functions) times that k-form.”)
Uniqueness: On 0-forms (=functions), d is determined by (1). Let w € QF,

k > 0. Then by (5), we need only consider w’ for charts (U, ). Then
U

w

=" > fiiy dri A Ada,
U

11 < <ig
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U

i1 < <ig

Z (p*(d(filwu,ik d‘ril /\..-/\dxik>)

i< <lig
2 *
_— Z QO ((dfll,lk A d.’Eil JANRERIAN dxlk) + fil 7777 de(dx“ A A dxlk

i1 < <ig,

i1 <--<ip

uniquely determined by (1)

Existence: Let {U; | i € I} be an open covering of M by domains of charts.
Let p; be a subordinate partition of unity.

w=lw=3 g =3 w

el =w; el

where supp(w;) C U;. Define dw = Y dw;, with dw; defined as follows: if
i€l

wi = 80: < Z firooig dxiy Noe o A dxik>
i1<"'<7;k
where it extended by 0 outside of U;, then
dwi==wf< > dﬂhmﬂkAchalA--~Adxu>
i< <ig

where df;, .., is defined by (1).
Well-definess: Suppose o € Q¥(M), s.t. supp(a) C U; NU;. Then ¢ =
a = ¢jy. We want to define do as widf, so we need to check p;df = pidy.

v=(p;)a=(o;")eiB=(piow;")B
dy = d(piop; ) B = (piop; ') d

Therefore,
pidB = pjdy

Lemma 11.9. If o € Q}(M), then
da(X,Y) = Lx(a(Y)) — Ly (a(X)) — o([X, Y])
Proof. Tt is enough to check the formula for a = f - dg, where f,g € C*°(M).

da =df Ndg
do(X,Y) =df Ndg(X,Y) = df (X)dg(Y) — df (Y)dg(X)
=LxfLyg— Ly fLxg
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Lx(a(Y)) = Ly (a(X)) — a([X,Y])

= Lx(fdg(X)) — Ly (fdg(X)) — fdg([X,Y])

= Lx(fLy(9)) — Ly(fLxg) — fdg([X,Y])

= (Lxf)(Lyg) + fLxLyg — (Ly f)(Lxg) — fLyLxg — fdg([X,Y])
)

= (Lx ) (o) — (L )(Exo) + (LxLg = Lk = Lixyia)

Definition 11.4. For X € X(M), let ¢, be the flow. Then for w € QF(M),
define the Lie derivative of w as

O

Lxw= @gprw .
Take o € QY (M).
d .

(Lxa)¥)o) = (Geie] @) ()
_ i @@t (@) (Dpee (Y (p) — a(p)(Y(p)))

t—0 t
_ iy U2t (0)(Dppe (Y (p) = Y (1)) + alpu(p)) (Y (¢:(p)) — a(p) (Y (p)))

t—0 t

= Lx(a(Y))(p) — a([X, Y])(p)
We have proved (Lxa)(Y) = Lx(a(Y)) — a([X,Y])
~ Lkat?T] + do(X, ¥ ) =LY T + Ly (a(X))
= da(X,Y) = (Lxa)(Y) — Ly (a(X))
Definition 11.5. For X € X(M), define the contraction with X

ix : QF(M) = QF1(M)
wr—>w(X,...,Xk)

by

We have ix = 0 by skew-symmetry.
Moreover, ix (wWAn) = (ixw)An+(—1)48“wAixn. e.g. if degw = degn =1,
then
(ix(@Am)(Y) = (wAn)(X,Y)
= w(X)n(Y) = w(Y)n(X)

((ixw) A)(Y) + (1) " (w Aixn)(Y)

In general, n A w = (—1)deemdegwyy Ay,

Theorem 11.10 (Cartan Formula). On QF(M), we have Lx = doix +ix od.
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Proof. For k = 0, the formula reduces to Lx = ixod. Apply Lx to f € C>(M):
Lxf =ixdf =df(X) true! For k =1, let a € Q' (M), then

(Lxa)(Y) = da(X,Y) + Ly (a(X))
=da(X,Y) +d(a(X))(Y)
= ((ix 0 d)a)(Y) + ((d 0 ix)a)(Y)

= Lx =ixd+ dix on 1-forms
In general, Cartan formula is local and R-linear, so it is enough to check it on

w=aj A Aag, where a; € Q1 (M).

k
wa:Zal/\~--/\LXaj/\~-/\ak
j=1

k
:Z(al/\--~/\ixdozj/\---/\ak—l-al/\~--/\dai(X)/\-~-/\a;€)
j=1

|
= i;(chu + d(i){OJ)

k
ixw = Z(—l)i_lal A ANai(X)A-- Aag
j=1
k .
d(ixw) =Y (=1 d(a;(X)) Aoy A AT A A

o (X)d(ar Ao AaG A Aag)

“rag A Adag A A g

k
+ Z(—1)J’
g
dw =Y (~1)
" k

ixdw:iXZal/\~--/\daj/\---/\ak
j=1

where the hat (&;) means that the jth factor is omitted. O

11.3 Manifolds with Boundary
We look at the half space
H" = {z = (z1,...,2,) € R" |z, 20} CR"
The boundary is
OH" = {z = (x1,...,2,) ER" | 2, =0} =R"™! C H"
Then the interior is

intH" = {x = (x1,...,2,) € R" | 2, >0} CR"

open
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Definition 11.6. A differentiable manifold with boundary is a topological space
M which is Hausdorff and has a countable basis for its topology and has an atlas

(Ui, i), @ € I, where U; C M are open, M = |J Uj,
i€l

p; : U; = H™ are homeomorphisms onto their images
and, whenever U; NU; # @,
w0t pi(UiNU;) — ¢;(U; NU;) is a diffeomorphism

If U C H" is open, a map f : U — N is differentiable if it admits a differen-
tiable extension to open set in R".

7 77777777 I SIS I IS I SIS IS
17777777777 TP I I I 1171177777777 777777
IIII I I 7 77777777777 777777777777777777777777
I I I I I I I I I I I I I I 7771777777777 7777777777
V1717777777707 707 777777777777 777707777707277777777277777777
I I I I I I I I 7177771777777 7777777777777
7 Ay
ey 7 7707777777777
77 7777 77 7077777777 777777
777777777777 7777777 7707777777777777777
ey Ty
177772777777 727747727777 Ry
107777 R 7 777777 77777777
1T IV I I NI I I 7777777777777 777X777777777777777777
1177777 77 A 77 Ry
7777

7777

A A

M manifold with boundary

OM :={p e M [3(Ui, i), s:t. pi(p) € OH"}
int M :={pe M|3IU;,p), st.(p) € intH"}
Lemma 11.11. OM, int M are well-defined, M = OM Uint M.

Proof. Suppose p € U;, and ¢;(p) C intH". If p € Uj, then ¢; o <pi_1 maps
¢i(U; NU;) diffeomorphically to ¢, (U; NU;). If this touches OH", shrink U;, to
get an open neighborhood of p in M. which maps to int M. O

Considering U;Nint M and restricting ¢;, we obtain a smooth atlas for int M,
showing that int M is an n-dimensional manifold in the usual sense.

If OM # @, then considering U;NOM and restricting ¢;, we obtain a smooth
atlas for OM, showing that OM is a (n — 1)-dimensional smooth manifold in the
usual sense.

{manifolds} C {manifolds with J}

SIISSIS S

(pviuv)v pE M muff
i€, st. pelU; ezt T H" = R™
v e R" =T, pR"

The usual definition of TM — W works for manifolds with boundary.
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Example 11.1.
(0) M =H", OM = oH".

(1) Be(p) = {z € R" | d(z,p) < &}, 0B:(p) = S"7".

(2)

M x N is a manifold with boundary

M manifold with boundary oM }
O(M x N)=0M x N

Nmanifold (without boundary)

(O M is orientable if TM — M is an orientable vector bundle.

(@ M is orientable if there is an atlas (U;,;), ¢ € I, s.t. all ¢, o cpfl are
orientable-preserving.

(W< (): Both definitions also apply to manifolds with boundary, and are still
equivalent.

Lemma 11.12. If M is an orientable manifold with boundary, then dM is an
orientable manifold (in the usual sense).

Proof. M is orientable = 3 atlas, s.t. all ¢; o ¢, ! are orientable-preserving.
Suppose p € OM, and p € U; N Uj.

T

Yis--vsbn TLr- - In Ik:(pk(ylr-'ayn)
Dx
D, ==
i(p) (#) < E
*
0
Dk i<n—1
_| 9w
*
0
0 - v 0 Pn
Oyn
dpn . o . . - .
where e > 0. Since D, p)p is orientation-preserving, the restriction ¢ is
Yn ' OH
also orientation-preserving. O
. . 0 . .
Let z1,...,x, be the linear coordinates on R”, —, ..., —— is an oriented
o0x1 oxy,
basis for R* = TyR™. We want to choose a basis v1,...,v,—1 for R*»~ 1 c R",
0
so that ———, v1,...,v,_1 is positively oriented in R”, i.e. it defines the same

O0xy,
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0
orientation as —,..., —.
I 8.%1
n= gy
0
Vg = —
2 3:@
0
Uy =
n—1 8.I‘n_1
s L 0 o . .
Definition 11.7. If M is oriented, so that T B give the orientation
X1 In
in a chart, then vq,...,v,_1 define an orientation for M, called the induced

orientation on the boundary.

Example 11.2. M :=([0,1] x [0,1])/ ~ is a manifold with boundary OM = S*.
(0,t) ~ (1,1 —1)

Remark. If M is orientable, so is int M.

11.4 Stokes’ Theorem

weEMN(RY) = w=f-dr; A Adz,, f € Q°(R™). w has compact support <
f has compact support.
Assume this is the case. Define

/w:/fdx1~~da:n

Let ¢ be an orientation-preserving diffeomorphism.

/sa*w = /(f o @) det (gfj

O0p;
We get f Paw = f w if det < aw ) > 0. So [ is well-defined under orientation-
R™ R™ SUJ
preserving changes of coordinates. Let M be an orientable manifold with fixed

orientation. Let (U;, ;) be a smooth orientated atlas.

)dl’l"‘dl'j

Theorem 11.13. There is a well-defined R-linear map (works for M with
boundary by R™ — H")

/:QQ(M)ﬁR

M

s.t. if supp(w) C U;, then /w = /(90;1)*0-%
M

R



CHAPTER 11. INTEGRATION OF FORMS 99

Proof. Let w € Qf(M), and let p; be a smooth partition of unity subordinate
to Ul
w= 1-w:Z(piw)
il

If / exists and is R-linear, then

/w—Z/ piw) Z/ (11.1)

? Rn

This shows that / is unique. Use (11.1) to define / . This is well-defined,

M M
because all transition maps are orientation preserving, so

Jery@) = [ @
R7 R™
if supp(w;) C U; N U;. O
Let M be a smooth n-dimensional manifold with boundary.
Theorem 11.14 (Stoke’s Theorem). If ¢ : M < M is the inclusion and M is

orientable, then
/dw—/zw Yw € Qo (M)

oM
where OM carries the orlentatlon induced from M.

Proof. Case 1: M = H".

w=Y_ fidvy Ao Adz Ao Ada,

where the hat (d/a:\,) means that the ith factor is omitted. Since i*, d, / are R-

linear, we prove stokes theorem for each summand. Without loss of generality,
w=fdry N Ndzx; N--- Ndzx,.

*

Subcase la: i< n = i*w=0 = /iw:().

OHn
/ /Z Zduj Adzy A Nda A Ady,
Hr J= 1
0 —~
= fdxi/\darl/\--~/\dxi/\~-~/\dxn
axi
H’ﬂ
. 0
— _1 Z—l/af /\da’;n

_ z 1 d
/ /8% o
. +oo —
— (_1)171/,..//700 aixld'rtdxl .dxl .dxn f— O



CHAPTER 11. INTEGRATION OF FORMS 60

+oo 6f
/ dz; = 0, since f has compact support.
— 0 8zi

Subcase 1b: i =n, w = fdzi A ANdxp_1. Fw=f

[remer [T f

ol

daﬁ VARERIAN d.ﬁn_1.
OH"

d.]?l dmn 1

where the equality comes from induced orientation, since (—1)"dxy - - dx,—1 is
positive oriented. Then

/dw = dwn ANdxy AN+ Ndx,_q

= (—1)”*1 / 8—fda:1 A Ndxy,

1y 5f

H"

“+o0 “+o0 “+o0 af
A n—1 .« e —_— “ e
=(=1) /m /WA Fo danday -+ dny
“+o0 “+o0
[T
of

——dr, = f(x1,. ., Tp_1,0) —f(21,. .., Tp_1,0) = —f
Oz, -
=0

Case 2: M arbitrary, w € Q0 (M), w = 3 pw.

Juum X fan

——dxq1 - -dz,

dxl o dxn—l
OH™

where [; oo

=Y [ diow)
)
=¥ [t o))
)
oL S [ it (o)
t OHn
= [ty = [ i
v OH™ oM

Corollary 11.15. If O0M = @, then /dw =0.
M

Corollary 11.16. If OM = @, then M does not have a volume form w, which
is da, with o € Q0 H(M).
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0</w:/da:0

M M

Proof.

This leads to a contradiction. O
Example 11.3. M = B;(0) C R?, OM = S, w = dx A dy = d(zdy). Then
Area(B4(0)) = /d(a:dy) = /xdy = /cos ed(sinp) = /cos2 wdp
M st st 51

Since

—_

1
(singpcos ) = cos?p —sin® p = 2cos? o — 1 = cos®p = 5 + =(sin g cos ¢)’

[\

Thus,
1 1 ) , 27
Area(B1(0)) = [ =+ = [ (sinpcosy)'dp = —dp=m
273 , 2
51 s
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de Rham Cohomology

Hip(M) = (D Hiin(M)
k=0

_ ker(d: QF(M) — Q5TH(M))

im(d : QM) — QF(M))
mology of M with compact support, where ker(d : QF (M) — Q5T (M) is the
closed form and im(d : Q871 (M) — QF(M)) is the exact form.

Definition 12.1. HF(M) : the de Rham coho-

Example 12.1. H)(M) =locally constant functions with compact support. If
M is connected, then

0 R M compact
H (M) =
0 M non-compact
M=R k=1
1
H®) = e

im(d : QO(R) — OL(R))
QLR) > w = fdt, f € C°(R). Before

F(a:):/j FO)dt, w=dF

“+o0

But F' does not have compact support, if / ft)dt =c #0.

If ¢ =0, then F € Q)(R) and dF = w, then [w] =0 € H(R). If ¢ # 0, then
still dF = w, but F ¢ QY(R).

Suppose G € C°(R) and dG = w. Then d(F —G) =0. = F -G =d is
constant, for v < 0: G(v) = d and for > 0: G(z) = —d+c.

Since G has compact support = d = 0 and d = ¢. This leads to a contra-
diction since ¢ # 0.

= w ¢ im(d : QY(R) — Q}(R)).

= H!(R) # 0.

62
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Theorem 12.1. If M is a smooth n-dimensional oriented manifold without
boundary, then

AZ:HS(M)%R

is well-defined and surjective.

Proof. Tf [w'] = [w] € H?(M), then ' = w + da, with a € QJ 1 (M).

/w’:/w+/da———8t°kes /w+/a:/w
M M M M oM M

Let p > 0 be a bump function, with support in a chart: w = pdaxy A --- A dzy,.

+oo +oo
/w:/pdazl/\~~~/\dxn:/ / pdzry---dx, >0
M U o -

By linearity, surjective follows. O
Example 12.2. M =R

/ cHYR) - R

R

Claim 12.2. This is an isomorphism.

Proof. fdt = a € Q§(R), where f € QY(R).

for fru-

R R
If [a] € ker /
R
& c=0
& a = dF with F € Q)(R)
& [] =0

The instance of Poincaré duality.

M= | 0, (®) | HE(®)
k=0 R 0
k=1 0 R

O

H}(M) = @ HF(M) is an algebra with A induced by wedge product on

forms.
HJjp(M) x HL(M) = HYT' (M)

because a wedge product has compact support if one of the factors does.
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Suppose f : M — N is a smooth map between smooth manifolds. The
pullback f*: Q¥(N) — QF(M) commutes with d. In particular, if dw = 0, then
df*w = f*dw =0 and if w = da, f*w=df*a.

= f*: Hip(N) — Hbp(M) is well-defined, linear. This f* induces an alge-

o] - [
bra homomorphism.
f* : HdR(N) — HdR(M)

Example 12.3. M = B;(0) C R".

=1Id
oM

Claim 12.3. There is no smooth map n: M — OM, r

oM
Proof. Assume there is such an r, then

OM =S — 5 Bi(0)=M —— M = 5"~}

\/

Idgn—1

R 0 R

Hip'(8"") «— Hjp' (B1(0)) «— Hyp'(5"")

\/

=(roi)*=Id%,, _,=Id

This leads to a contradiction. O



Chapter 13

Connections and Curvature

13.1 Connection
Let E — M be a smooth vector bundle of rank k. Then
I(T*M ® E) = QY(E)

which is adjunction T*M ® E > Hom(TM, E). If a € QY(E), then a(X) €
I'(E), VX € X(M).

Definition 13.1. A connection V on F is a R-linear map
V:T(E) = QYE)
satisfying the Leibniz rule
V(f-s)=df @ s+ fV(s), VfelC*®(M),sel'(E)
Properties:

(1) V does not increase the support of a section, i.e. if U C M open and

seT'(F),s| =0,then Vs| =0.
U U

Proof. Take p € U. Then there exists a smooth function f € C*(M),
with f(p) =1 and supp f C U. Then f-s =0, so by R-linearity:

0=V(f-s)=df @5+ [V(s)
Evaluated at p

0= (df ®s)(p) +f(P)V(s)(p) = V(s)(p)
—_———

=0, because s(p)=0

This implies V(s) = 0 on U, because p € U was arbitrary. O

65
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(2) The value of V(s) at any point p € M depends only on the restriction of s

=5

U

to an arbitrarily small neighborhood of p. If 5,8 € T'(E), s.t. s

U
for some U > p, then

V(s)(p) depends only on the germ of s at p. This is called differential
operator.

(3) If V! and V° are connections, so is tV! + (1 — )V? := V!, Vt € R.
Proof. V! is R-linear.

Vi(fs) =tV (fs) + (1 —t)V°(fs)
=t(df @ s+ fV(s)) + (1 —t)(df @ s+ fV°(s))
=df @ s+ fV'(s)

(4) If V!, V% are connections, then V! — V? € Q'(End(E)), End(E) =
Hom(E, E) = E* @ E.

Proof. V! — V° is R-linear.

The Leibniz rule gives (V! — VO)(fs) = f(V! — V?)(s).

= (V! = V9 (s)(p) depends only on s(p).

(VI=V°),: E, > T:M & E,.

V! - V0 e D(E* @ T*M @ E) = Q1 (E* @ E) = Q' (End(E)). O

Proposition 13.1. Every vector bundle E admits connections. The space of

connections is naturally an affine space whose vector space of translation is
QYEnd(E)).

Proof. Suppose E has connections. Then the difference of two connections is
an element in Q'(End(E)) by (4). Conversely, let A € Q'(End(E)) and V a
connection on F. O

Claim 13.2. V+ A:T'(E) = Q(F) is a connection.
s = V(s) + A(s)

Proof. V 4+ A R-linear is clear.
(V+A)(fs) =V (fs)+A(fs) = df@s+ [V (s)+fA(s) = df@s+ f(V+A)(s). O
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13.2 Existence of Connections
Pick a system of local trivializations for F.

wi : 7T_1(UZ‘) — U; x Rk

On E| , we define V' as follows: Let s; € F(E‘U_) be defined by s;(p) =
u :

v (p, ej), where ey, ..., e is the standard basis of R*. Every section s €
k
I‘(E|Uv) has the form s = ) f;js; for uniquely determined functions f; €
k2 J:l
C>(U;).

k
Vi(s) = Z df; ® s;
j=1

This is clearly R-linear.

k
Vifs) =V Y f- s
j=1

I
™=

d(ff;) ®s;

=1

<
S

(fdf; + fidf) ® s;
j=1

=df @s+ f-V(s)

so V' is a connection on F

U;
Let p; be a smooth partition of unity subordinate to the covering of M by
the U;. Define V := Y p; V' - As in (3), we can show that V is a connection.
i

Vi(s;) = 0 by definition.
Terminology. si,...,s; form a frame for £
U;

If s is a section, s.t. V(s) = 0 for some connection V, then s is called

parallel or covariantly constant.
QUE) =T'(A'T*M®) I-forms on M, with values in E.

Lemma 13.3. For every connection V on E, there is a unique R-linear map
V: QUE) — QHL(E) satisfying:

Vwes)=dw®s+ (-1D)'wAVs,  VYweQ(M),secT(E) (13.1)
Moreover, this V satisfies

V(flw®s)) =(df A\w)@s+ fV(w® s), fec=(M)
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Proof. Every element in QUE) is locally a sum of terms of the form w ® s.
Define V using a partition of unity and linearity, so V is uniquely determined
by (13.1).

V(flw®s))=V((fw) ®s)

d(fw) ® s+ (=1)' f(w A Vs)

=(df N\w)@s+ fdw® s+ f(=1)'wA Vs
=([dfANw)@s+ fV(w®s)

13.3 Curvature

Let V be a connection on F.
Lemma 13.4. The composition Vo V : ['(E) — Q2(E) is function-linear.

Proof.

(VoV)(fs)=V(df @ s+ fV(s))

V(df ®s)+ V(fV(s))

d f@s—df ANVs+df AVs+ fV(Vs)
2=0

— f(VoV)(s)

"

The lemma shows that VV(s) = F'V(s), where FV € Q?(End(E)).
Definition 13.2. FV is called the curvature of V.

Let E — M be smooth vector bundle with connection V. Let s1,...,s; be
frame. Then

k
V(Sz) = Zwij (SOCH
j=1

k

where w;; € QY(M). We have s = > fis;, V(s) = > (dfi @ s; + fiV(si))
i=1 i=1

completely determined by (w;;). FV € Q?(End(E)).

k
F¥(s:) =) Qi;@s;
j=1

where ;; € Q*(M).



CHAPTER 13. CONNECTIONS AND CURVATURE 69

Question: How is ;; determined by w;;?

FY(s;) =V oV(s;)
= v Zwij ® Sj
J

(dwij ® S5 — Wiy AN V(SJ))

<
Il
Jan

I
'M”

k
dwij ® Sj — Wiy A\ E wij X 81
=1

|

<
I
-

I

X Sj.

k
[dwij — Zwil N wyj

=1

1

J

So

k
Qij = dwij — E wi N\ Wy
=1

This can be denoted as

’Q:dw—w/\w‘

Then

inj = — Zdwil ANwij + Zwil A dwy
l l

Nwij + Z w1 N\ <Qlj + Zwlm /\wmj>1
l m

!
= Z(wu A Qi — Qi Awyj) + Z(wu A Wim, A Winj — Wi, A Wing A wy5)
.

l,m

Qil + Z Wim N\ Wl
m

13.4 Bianchi Identity

inj = Z [wil A Qlj —Qa A o.)lj]
l

which can be denoted as

[dY=wAQ-QAw|

Let s7,..., s}, be another frame.

8 = E gzjsj

where g = (g;;) invertible. Then
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where (w;;)’ is the connection matrix of V with respect to s/,..., s}.

> 9isi
j

= (dgi; ® 55+ 955V (5))
i

k
= Z dgw ® 85 + Gij ijk ® 3l>

=1

I
M:r .

dgzy + ngwjl X s

N
Il
-

[
E

k
dgit+ Y gijwit | © D Gim St
7 m=1

N
Il
-

[
M=

Z dga + Zgijwjl Gim | ® sl
l J

3
l

Then
Wi = Z dgi + Zgijwjl gfml,
l J

This can be denoted as

o =dgg ™ + gug |

The following terms are the same:

a choice of local trivialization < a choice of a frame
< a choice of gauge
A change of frame is called a gauge transformation g.
Q =dw —w A
= d(dgg™" +gwg™") — (dgg™" +gwg™") A (dgg™" + gwg ")
=d?g9 ' —dgANdg™t +dg Awgt + gdwgT! — gw A dg?
—dgg~' Ndgg™ — gwg™! AdggTt —dggT! AgwgTt — gwg! A guwg !
=gQg "
Compare the following two equation:

w' =dgg~' + gwg™?

Q =gQg!
The first one shows that connection is not a “tensor”, while the second one

shows that curvature is a “tensor”.
Let V: T'(E) — Q(E).



CHAPTER 13. CONNECTIONS AND CURVATURE 71

Definition 13.3. Vxs = (Vs, X) € I'(E) for every X € X(M) is the covariant
derivative of s (in the direction of X).

Let (U, ) be a chart for M.

T1,...,2n:U—=R
p+ ©i(p)
where dz1,...,dz, are the dual frame to Oy,...,0O,.
Let s1,...,s; be a frame for E V is represented by w = (w;;) with
U
n
respect to si,...,s;. Then w;j = 3 w,;;*dr, for unique w;;* € C*(U), where

wijo‘ = <wij,8a>.

Z<wiﬂ’ ) ® s = Zw

J

<
&3]
&
|
<
&
I
L
I
/Pﬂ\
&
S
®
k)CI‘)
&
\/
I

k

k
Vo.s = (Vs,da) = <Z dfi ® si + fiVsi,3a> = Oalisi+ D fiwi"s;
=1 i

=1

forg)-

j=1 i=1
A% = (w;;*) is k x k matrix of C*-functions on U.
Vo.8 = 0as+ A%(s)
We define
Vo =0, + A

13.5 Parallel Transport

Let M C R™ open. Let E 55 M smooth vector bundle of rank k, with a
connection V. Let y1, ..., y, be linear coordinates on R™. Let ¢ : [0,1] — M be
smooth curve, then write it is in terms of coordinates

cft) = (yl(t) s Yn(t))
dya
ZW@ Zya o

a=1
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Assume E is trivial. £ = M x R*. Let sy,...,s; be the frame with s;(p) =
k
(p,ei). s € T(F) is written uniquely as s = 3 z;s;.
i=1

VC(S) = <VS, é>

k n
= <Z dxr; ® s; + x;Vs;, Zyaaa>
_Z<Za dy] ®SZ+quwz]®5]7y0z a>
*Zya 57 +xlzw1j yOKS]

_Zya 5]+Z‘Twz] yOtS]

- z (z <8y+ o, ) y> s

Proposition 13.5. Let E — M be any smooth vector bundle, with a connec-
tion V. Let c: [0,1] — M be a smooth curve and v € E ). Then there exists
a unique lift ¢: [0,1] — F with 7o ¢ = ¢, with ¢0) = v and Vs =0 if s is a

section of F given by ¢.

imec

Proof. By compactness of [0, 1], we can choose a finite subdivision tp = 0 <

t1 <o <t =1,s8t ¢ has image in an open set in M, which is the

[tistita]
domain of a chart and over which F is trivial.

Without loss of generality, we only need to prove the proposition for ¢ with
image in a chart where F is trivial.

We write ¢(t) = (y1(£),...,yn(t)) and use the frame sq,..., s given by the
trivialization.

é(t) = Zle x;(t)s;(e(t)) with v = ¢(0) = Z:a:z(O)sL(c(O))

The equation Vs = 0 is equivalent to

n k
Z (8‘% +Z:c,-wija> Jo=0, Vje{l,....k}

0y i=1
5+ Z Tili; “=0
This is a linear system of ODE for the function z1,..., x.
For every initial condition z1(0),...,z;(0), there is a unique smooth solu-
tion, which, moreover, depends linearly on the initial condition. O

Corollary 13.6. Let E =5 M and V be as in the proposition. Then every
smooth curve ¢ : [0,1] — M defines a unique linear map
E o) = Ecy
¢(0) = v+ é(1)
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This linear map is an isomorphism

Let E 5 M be any smooth vector bundle over M. p,q € M, E,, E, are
k-dimensional vector spaces.

(1) If pg € U C M and ¢ : E| — U x RF trivialization, then 1 identifies
U
E, with {p} x R* and E, with {¢} x R¥, so those are identified using .

(2) If a connection V on E is given and there exists a smooth path ¢(0) = p,
¢(l) = g, then P, =parallel transport along ¢ defines an isomorphism
between E, and E,. P, depends not just on V but also on c.

In a trivialization, every V is given by V, = 0, + A%.

_ a a a
wij = E w;;* dYa, A% =wy;
[e3

Proposition 13.7. Let E = M be a smooth vector bundle of rank k and

51,...,5; be frame. Let V be a connection on E, w;; its connection matrix
with respect to s1,..., s, and §);; its curvature matrix. If we pick a chart with
coordinate functions y, ..., y,, then

k
VQ,VB ZQU aomaﬂ
Jj=1

Corollary 13.8. FV =0 « ;; for every local frame < [V,, V] = 0.
Proof.

Qi (0, 95) = (dww Zwlmw”) (8, D5)

_ § B, «
_La ( ’Lj ) Laﬁ Wit wl] — Wy o‘)lj

k
Opw;;* — Z(Wﬂ awz]ﬂ - wilﬂwlja)

=1

_ B
= aw” —

k
VaVasi =Va((Vs;,08)) = Vg <ZWij & Sj,a,@>

j=1

k k
:Va Zwi]ﬂs]‘ = <V Zwiij ,8a>
j=1

j=1

|

(dwijB ® s; + wijBVSj78a>

<
Il
—_

I
M?r

((%WU +szz wlj>

=1

<.
Il
—

[
W

1

<.
I
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= (VQVQ — nga)si

k k
B B B
(8““% w0 gy =Y wi ) K

1 =1 =1
k

B B B

(a(xw” - 8,(30}2]0‘ - Z <wil O‘wlj — Wy wlja>> S5

=1

|
-M”

J

|
<Mw

1

J

[
W

Qij(0n, 0p)s;

.
I
—

O

Over a curve, every V admits local trivializations by parallel sections, i.e. a
parallel frame.

Theorem 13.9. E admits a system of local trivializations by V-parallel frames
if and only if FV == 0.

Definition 13.4. s € I'(E) is V-parallel if Vs = 0. A frame s1,...,s; is
V-parallel if Vs; = 0, Vi.

Proof. Suppose s1, ..., s is a V-parallel local frame. Then 0 = Vs; = > w;;®s;
J
= Wij =0, VZ,] = Qij = dwij —Ewil /\wlj =0, so FV =0.
1

Conversely, if FV = 0, we want to find local V-parallel frames. Since the
statement is local, we work on M = R".

For n =1, we find a V-parallel frame over R by parallel transport.

For n > 1, we prove the statement by induction.

Let p > 1 and assume we have a V-parallel frame over R? x {0} C RP*!. By
construction, F is trivial on R™, so we may pick an arbitrary frame for E. We

need to find a gauge transformation g, so that s, = Z gi;8; gives a V-parallel
J

frame s,...,s). We want to solve
0=wi;=(dg-g " +gwg™ ")
= wi; @ =0, Yo
o *
< Oagij + Zgilwzj =0, Vo (*)

l

For the inductive step, we assume, we have a g s.t. (*) holds for o < p.

In the inductive step, we assume the statement has been proved for RP. This
means wija =0 for a < p.

To obtain the statement over RPT!, we need to solve

0agij =0 for a < p and dpy19:5 + Zgilwljpﬂ =0Vi,j (**)
1
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Fix all yz except yp41. We treat the second equation in (**) as an ODE in yp41.
With initial condition ¢g(0) = 1, this ODE has a unique solution.

Varying the starting point (the y-coordinates other than y,41), the solutions
of the ODE vary smoothly.

The assumption that FV = 0, means [V,,Vg] = 0, Va,3. Take a < p,
B8 =p+1. Then

aawilp-&-l _ 8p+1%fer+ Z(wijp+1%_%wjlp+l) -0
J

= 5'awil ptl = O
+1 - —1\p+1
= wi; " =(dg g™t + g =0
because g solves the second equation in (**). O

Corollary 13.10. A vector bundle £ =+ M admits a flat connection V if and
only if it admits a system of trivializations with constant transition maps.

Proof. If E admits V with FV = 0, then we can find local trivialization given
by V-parallel frames.

Yy Y (U) = U x Rk Yy o (V) = V xR
v = me = (1), ALy AR) v = st; — (r(v), (1, - - i)

Yvoy : (UNV)xRY - (UNV) x R
(p,w) = (P g(p)w)
where g : UNV — GL(R) is smooth.

/: dgg™' 4+ gwg™! < dg =0, so g is constant.

Conversely suppose we have (U;,1);) a system of local trivialization for F, s.t.
each 9; o wi_l has the form (p,w) — (p, g(p)w) with g constant.

On E| , we define a connection V by making the constant sections in the
U;
trivial bundle parallel, i.e. s;(p) = ¥~ 1(p, e;).

Vv ijsg‘ szfj@?sj
J J

Claim 13.11. If U; NU; # &, then V' = VJ on =1 (U; N U;).
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Proof. s, = Zgijsj, with dg;; = 0.

J
= s} which are V7 parallel are also V? parallel.
= Vi=V/
= The V* fit together to a global connection V. Since V' is flat, sois V. O
Remark. To prove existence of connections on arbitrary F, we also took local
trivializations (U;, ;) and the corresponding flat connection V*. If the tran-
sition functions are not constant, the V* do not agree on the overlaps of their

domains.
V =5 p;V", p; a smooth partition of unity, is not flat.
i

13.6 Compatible

E = M admits a positive definite metric ( , ) : T'(E) x I'(E) — C>(M).

Definition 13.5. A connection V on F is compatible with ( , ), if

d<81, 82> = <VS17 82> + <81, VS2>, Vsl, So € F(E) (132)
Lemma 13.12. V is compatible with { , ) if and only if for every orthonor-
mal local frame s1,..., sk, the connection matrix w representing V is skew-
symmetric, i.e. w;; = —wj;, V1, J.
Proof. Let sq,..., s, be orthonormal frame with respect to (, ). Then
(si,s;) = const., Vi, j

If V is compatible with (, ), then

0 = d<8i7 Sj>
= (Vsi, 85) + (s:, Vs;)

< wil ®Sl;33> + <Sj,zwﬂ ®31>
1

= (wirlse, 55) + wji(si, 1))
l

= wij +wji

- Wij = —Wji
Conversely, assume w is skew-symmetric
(Vsi,s5) + (54, Vsj) =wij +wj; =0
(si,8;) = const. = d{s;,s;) =0

= (13.2) holds for the basis sections.
Let s=)" fisiand s’ =) g;s;. Then
i J

Z.fzgz = d 3 3 Zfzdgz+zgzdfz



CHAPTER 13. CONNECTIONS AND CURVATURE 7
<V$, S/> + <S, V5/> = Z(dfl ® s; + fZVsZ, gjsj) <fisi, dgj (24 Sj + ngsj>

*Zgzdfz+2fzdgz+2flgj vsl?’sj <Siav5j>)

=0 by above

= d(s,s'y = (Vs,s') + (s,Vs')
O

Lemma 13.13. If V is compatible with { , ), then Q is skew-symmetric for
every orthonormal frame.

Proof.
Qij = dwij — Zwil A wlj
l

= —dwji — Zwli N Wi

—(dw;; — E wijr A wig)

= _Q]Z

Definition 13.6. A € I'(End E) is skew-symmetric with respect to ( , ) if
(As, sy = —(s, As'), Vs,s' € T'(E)
End E = Skew — End E @ Sym — End(E).

Proposition 13.14. For every metric ( , ), there exist compatible connections
V. All such connections is naturally an affine space for Q! (Skew — End(FE)).

Proof. Let {U; | i € I} be an open cover of M, s.t. E| is trivial. Then

Ui

on every U;, we have an orthonormal local frame for E with respect to ( , ).
Let sq,...,s; be such an orthonormal frame over U;. Define V* on E by
Vi(s;) = 0. "
Claim 13.15. V' is compatible with (, ).

Proof. With respect to orthonormal frame sq,..., sk, wi; = 0. So w;; is skew-
symmetric. Let p; be a smooth partition of unity subordinate to U;. O

Define V := Y p;V’. This is a connection on E compatible with { , ),

because each V? is.
Suppose V, V' are both compatible with (, ). Set V-V’ = A € Q'(End E).
Then
V')s,s')

(v

= (Vs > (V's,s)
d((s, ) —(s,Vs')y —d((s,s)) + (s, V's)
—(5,(V=V')s)

—(s, 8’>

(As, sy =
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So A € Q!(Skew — End(E)).
If V is compatible with the metric and A € Q!(Skew — End E), then V + A
is also compatible. O

Example 13.1. k = 1: Let s be a (local) section of E, s nowhere zero.
Vs=a®s=w;1 ®s

Q1 = dwi — Zwu Awyr = dwiy — WA
I

= d€11 =0

Suppose we have a metric ( , ) and (s,s) = 1. If V is compatible with ( , ),
then Vs = 0.

(s,s) =const. = 0=2(s,Vs) = Vs=0,by l-dimension

Conclusion: Every compatible connection V on a rank 1 bundle is flat. = Every
rank 1 bundle admits a flat connection.

13.7 Affine Connection

Definition 13.7. A connection on £ = T'M is called an affine connection
on M. '
IE) — QYE) X I(B)
s Vs — Vxs

where X € X(M). If E =TM, then s € X(M).

Example 13.2. There is no affine connection V satisfying VxY = VyX,
vX,Y € X(M).

13.8 Torsion

Definition 13.8. If V is an affine connection on M, then
TV(X,Y):=VxY -VyX - [X,Y], for X,Y € X(M)
TV is the torsion of V.
Definition 13.9. V is symmetric if it is torsion-free, i.e. TV = 0.
Proposition 13.16 (Properties of TV).
(1) TV is skew-symmetric in X, Y.
(2) TV is C>°(M)-linear in X and Y.
Proof.
TV(fX,Y)=VixY - VyfX - [fX,Y]
=fVxY - ({df @ X + fVX,)Y) - fIX, Y]+ Ly fX
~—~
=df(Y)
=f-TY(X,Y)
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Let x1,...,x, be local coordinates on M given by some charts (U, ¢). Then
01,...,0, form a local frame for TM| =TU. If V is any affine connection on

U
M, we can write

Vo, = En:wij & 8]' Wij = Zn:wijldxl

j—l

va,ai_zwmal 0; _Zwmla _Zr;za
j=1

The I’ lj; are called the Christoffel symbols of V with respect to the local coordi-
nates r1,...,Tn

TV (8o, 9p) = Vo, 05 — Vo, 00 — [0arO5] = Z I}.)0;
j=1
Lemma 13.17. TV = 0 & Fi = Ba’ Va,B,5 € {1,...,n} and all local

coordinate systems on M.

Definition 13.10. V* on E* by

dA(s) = A(Vs) + (V*A)(s)
(X, s) = (N, Vs) +(V*As)

where VA € T'(E*),s € T'(E).

Claim 13.18. V* is a connection on E*.

Proof.
) )

(fA(s) = (fA)(Vs)
(f-Als)) = (f - N)(Vs)

= A(s)df + fdA(s) — [ - A(V(s))

= A(s)df + f(V*A)(s)

= (df - A+ fV*N)(s)
Let s1,..., sk be a local frame for F, and Ay, ..., A; the dual frame for E*, i.e
Ai(sj) = 0y
= Xi(Vs;) + (V*Ai)(s5)

k k
= )\i <Z w]'m X Sm> =+ <Z w;} ® Al) (SJ)
m=1 m=1

_ .. *
= Wji + Wy

= Wi = —wji, W= —w'

If V is an affine connection of M, then V* is a connection on 7M. O
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Proposition 13.19. V is torsion-free if and only if

QUM) =T(T*M) Y QUT*M) =T(T*M @ T*M) —— Q*(M)

\/

=d
Proof. Let xq, ..

., T, belocal coordinates, given by a chart (U, ¢). Then 04, ...,0,
is a local frame for TM and dzx1,...,dz, is the dual frame for T*M.
Every 1-form « on U is of the form

B = Z fidz;
i=1

= df= zn:dfi ANdx; = ZZ gj} dzj A dx; = Z (gxfl Js ) dz; Adz;
i=1 i j J — ]

al’i
1<J

VB =Y V(fidz:)
= dei ®@dx; + [;Vidz;

=Y dfi@dzi+ f; Y wi; @ dx;
( J

= Z df; ® dx; —fizwj‘i@)d.%'j
i J

ofi
—2 |2

o, dej @ dx; — f; Z wji“dxa ® dx;
-y

— 0

i,

Ja
2 dz; ® dz; — Z fiwjiadxa ® du;

,7,&

of; o
= jza: %d(ﬂa ® d.’Ej — Z fiwjl- dl’a & dlL’j

2,7,
=2 (gf - Zﬂ-wﬁ) dza ® dz;
Jyo « i

of,  fa ,
ANV*B) = Z (E?mf; — af% — Zfi(wjio‘ — waij)> dz A dz;

ANV*B) =dB, VB & ws —wl, =0,Yj,a &I,

Jj<a

N 1) : A
=Ij,Va,j &T" =0
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8 =df:

. . [~ Of
V*8=V dx;
(25
- ;d <(“)gcZ

) dx; + of V*(dx;)
—ZLdm@)dm—ﬁw--@dm
_ij Ox;0z; 7 ooz /

61}7;
i

o*f of  a
= sz: (8%8@ dxj @ dx; — Zu: D, i dre ® d:rj>

O*f of
- gj: (89@-83% - i %Fa]) dz, @ dz;

TV =0 & V*df is symmetric Vf € C>®(M).
——
€r(T* M®T* M)
TVIAX,Y) = (V+A)xY — (V+A)yX — [X,Y]
=VxY -VyX — [X,Y] —I—Ax(Y) — Ay(X)
=1V

where A € Q;(End(TM)), Ax € T'(End(T'M)), AxY is evaluation of the endo-
morphism Ax on Y. O

13.9 Riemannian Geometry

Theorem 13.20. Let ( , ) be a metric on TM (a Riemannian metric on M).
For every C*°(M)-bilinear skew-symmetric

T:X(M)xX(M)—X(M)
There exists a unique affine connection V compatible with (, ) and TV = T.
Proof. Uniqueness: Suppose V is compatible, with { , ) and TV =T.
d(X,)Y)=(VX,Y)+ (X,VY), VX, Y €eTM
Lz(X,)Y)=(VzX,Y)+ (X, VzY), VXY, Ze€TM
T(Z,Y)=VzY -VyZ—[Z,Y]

(VzX,)Y)=Lz(X)Y)—(X,V;Y)

=Lz(X,Y)— (X, T(Z,)Y)) —(X,VyvZ) - (X,[Z,Y])
=Lz X)Y)— (X, T(Z,Y)) - Lv(X,2)+ (Vv X, Z) — (X,[Z,Y])
— Ly(X,Y) — (X, T(Z,Y)) - Ly(X, Z) + (T(Y, X), Z) + (VxY, Z)
+([Y, X, 2) = (X, [Z,Y])
— LA(X.Y) — (X, T(Z,Y)) - Ly(X, Z) + (T(Y, X), Z) + Lx (Y, Z)
— (Y, Vx2) + (v, X], 2) = (X, [Z,Y])
=Lz(X,)Y)— (X, T(Z)Y)) - Ly(X,Z)+(T(Y,X),Z)+ Lx(Y, Z)
- (VN T(X,2)) = (Y, V2 X) = (Y, [X, Z]) + ([\, X], Z2) = (X, [Z.Y])
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Therefore, we have the so called Koszul formula.

(V2X,Y) = S(La(X,Y) ~ Ly (X, 2) + Lx{Y, 2) — (X, T(Z,Y)) + {Z,T(Y, X))

- <Y7T<Xa Z)> - <Y, [X’ Z]) + <[Ya X]vZ> - <X’ [Z’ Y]))

This shows VzX is uniquely determined VZ, X € X(M).
Existence: Define VzX by the Koszul formula. Fix M and (, ) on TM.

Let V be the Levi-Civita connection of { , ). Let x1, ..., x, be local coordinates
given by a chart d1,...,0, the coordinate vector fields.
Yij = (0i,0)
1 1
(Vo,05,0k) = §(Laﬂjk + Lo, Yri — Lo, Vi) = 5(@%& + 0jki — OkVij)
0; = ij,jak - Z L0
(Vo,0;,0) Z skl = 50k + 03k — Onij)
Formula of Filz- in terms of ;;. O

Setting T' = 0, we get

Corollary 13.21 (Fundamental Lemma of Riemannian Geometry). For every
metric on T'M, there exists a unique, compatible, torsion-free connection.

Definition 13.11. This connection V as in the corollary is called the Levi-
Civita connection of (M;(, )).

Definition 13.12. If V is the Levi-Civita connection, then
R(X,Y)Z = (F¥(X,Y))Z
is called the Riemann curvature tensor of the metric (, ).
This is trilinear over C*°(M).
R:X(M)xX(M)xX(M)— X%X(M)
(X,Y,Z)— R(X,Y)Z
Equivalently, we can consider R as follows:
R:X(M)xX(M)xX(M) xX(M) — C>®(M)
(X, Y, Z, W)= (R(X,Y)Z,W)
Proposition 13.22 (Symmetries of R).
(1) R(X,Y)Z = —R(Y, X)Z, because FV is a 2-form.

(2) R(X,Y)Z+R(Y,Z)X + R(Z,X)Y =0,VX,Y,Z. Sometimes it is called
the first Bianchi Identity.
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3) (R(X,Y)Z, W) = —(R(X, Y)W, Z),VX,Y,Z,W.
4) (RX,Y)Z,W) =(R(ZW)X,Y), VXY, Z W
Proof. (2) Tt is enough to prove (2) for X,Y, Z with pairwise vanishing brackets.
FY(X,Y)s=VxVys—VyVxs— Vixy]s
In this case, left hand side of (2)

VxVyZ -VyVxZ+VyVzX —-VzVy X +VVxY - VxVzY
— Vi (VyZ = VY)4Vy (V42X — Vi Z)+V 7 (VxY — Vy X)
~———

=0 =0 =0 since TV =0

=0

(3): We need to prove (R(X,Y)Z,Z) =0, VX,Y,Z. We may assume that
X,Y, Z have vanishing brackets.

(R(X,Y)Z,Z) = (VxVy Z,Z) — (VNyVxZ, Z)

Consider

Lx{(Z,2) = (NxZ,Z)+ (Z,NxZ) = Z(NxZ, Z)
LyLx(Z,Z) =2Ly(VxZ,Z) = 2((NyVxZ,2Z) + (Vx Z,Vy Z))

Ly Lx(Z,Z) is symmetric in X,Y, since (X,Y) = 0 and (VxZ,VyZ) is sym-
metric in X, Y. Therefore, (VyVxZ,Z) is symmetric in X,Y. Thus

= (R(X,Y)Z,Z) =0

(4):
(R(X,Y)Z, W)

(R(Y,W)Z, X (R(Y, )X, W)

(R(X, W)Y, Z) R(Z, X)Y,W)

(R(Z,W)X,Y)

Sum for upper left-hand face is (R(Y, X)W, Z)+(R(W,Y) X, Z)+(R(X, W)Y, Z).
Sum of labels is = 0 by (1)+(2)+(3) for top left and right and bottom front and
back faces.

Sum the top left and right and subtract the bottom front and back faces: =

The middle nodes cancel

oy
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Let M with metric and R its Riemann tensor.

Definition 13.13. Take p € M, X,Y € T),M linearly independent

(R(X,Y)Y, X)
(X, X){Y)Y) — (X,Y)?

K(X,Y) =
This is called the sectional curvature of (M, (, )) with respect to the plane
o spanned by X,Y in T, M.
Claim 13.23. K(X,Y) depends only on o = span{X,Y}.

_ N (R(X,Y)Y, X) _
Proof. K(AX,Y) = 45~ X XFT) - KT = K(X,Y) #0.

Since K(X,Y) = K(Y, X), we also get K(X,\Y) = K(X,Y).

(RX, Y)Y+ 2X), X) + (R(X, A X)(Y + A\X), X)

KXY X) =
(XY +AX) = X XV Y) T 02X, X) 7 20X, V) — (X,Y + AX)2
= K(X,Y)
This shows K(X,Y) is the same VX,Y € o. O

Proposition 13.24. The collection of all sectional curvatures determines R.

Proof. Let V be a vector space with positive definite ( , ).
Let R,R : V xV xV — V be two trilinear maps satisfying the symmetry
: (R(X,Y)Y, X)
of the curvature tensor. Then if K(X,Y) = X XY,V = (X, V)2
computed in the same way from R’ for all linear independent X, Y, R = R'.
R(X,Y)Z=0=R/(X,Y)Z,if X,Y are linear independent.
Assume X, Y linearly independent, then K(X,Y) = K'(X,Y) implies

equals K’

(R(X,Y)Y,X)=(R(X,Y)Y,X), VX,Y linearly independent

= (RIX+ZY)Y,X+2Z)=(R(X+ZY)Y,X +2)

& (RXPYXT+ (R(X,Y)Y, Z) + (R(Z,Y)Y, Z) HRIZ¥YZ] = (R R))
—_——
=(R(Y,2)X.Y)=(R(X.Y)Y.Z)
& 2ARX,Y)Y,Z)=2R(X,Y)Y,Z), VZ

After one more polarization Y — Y + W, we conclude

(RIX,Y)Z,W) = (R(X,Y)Z,W), VX,Y,Z,W

= R=FR
O

Example 13.3. Let M = R”, and (, ) constant, standard. Vai = 0 gives
Ty,
Levi-Civita == R =0, so K =0.
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Example 13.4. Let M C R""! be smooth hypersurface. (, ) on R™*! as in
13.3. V the Levi-Civita connection of R"*!. We restrict the constant scalars
product on R"*! to the tangent space of M to get a metric ( , ) on TM.
=TM & TM*

= TR™*!
M

where T M~ is the normal bundle of M.
If M is orientable, then there is a uniquely defined unit normal vector field

to M, so that the orientation of M together with the positive or of R defines
the standard orientation of R™*1,

Rn+1 X RnJrl

M

Definition 13.14. G : M — S™ C R™"! is the Gauss map of M.
p > n(p)
Definition 13.15. L :T,M — T,M is the Weingarten map of M at p.
v (@v”)(p)
Lemma 13.25. L is self adjoint with respect to (, ).
Proof. Let X,Y € X(M).
(L(X),Y) = (Vxn,Y)
= Ly(n¥7— (n,VxY)
= —(n,VyX + [X¥]
= —(n,VyX)
=—LynX)+ <@Yn7X>
= (L(Y), X)
= (X, L(Y))

Lemma 13.26. D,G = L.

Proof. DpG : T,M — Tg,)S™ = T, M, since both are orthogonal complement
of n.
Let ¢ : (—¢,e) = M be a smooth curve, with ¢(0) = p and ¢(0) = v. Then

DypG(v) = (De(0)G)(¢(0))

“neeo(2)

d
= Znle(t)

t=0
= Ven
= L(v)

Let X, Y € X(M).
VxY = (VxY): + (VxY), with respect to R"** = T, M ® Rn(p)



CHAPTER 13. CONNECTIONS AND CURVATURE 86

Definition 13.16. Define VxY = n(VxY), 7 : R**! — T, M is the projection
with kernel Rn(p).

Lemma 13.27. V is the Levi Civita connection of M.

Proof. Step 1: V is a connection on TM. VxY is R-linear in X, Y and it is
C>°(M)-linear in X.

Vx(fY)=n(Vx(fY))=7(Lxf Y+ fVxY)=Lxf Y+ f-VxY

Leibniz rule for V.
Step 2: V on T'M is compatible with (, ).

(VxY, Z)+(Y,VxZ) = (VxY, Z)+(Y,Vx Z) = Lx (Y, Z), X,Y,Z € X(M)
Step 3:
0=TY(X,Y)=VxY - VyX — [X,Y], X,YeX(M) (13.3)
projecting to T'M gives
0=VxY -VyX —[X,Y] =TV(X,Y)
In (13.3), take (—,n)

0= (VxY,n) — (VyX,n) =280 (1(X)Y) + (X, L(Y))

& L is self adjoint with respect to (, ).

X,Y € X(M), VxY = VxY + (VxY,n)n = VxY — (L(X),Y)n.
Take X,Y,Z € X(M).
VxVyZ =Vx(VyZ — (L), Z)n)
=VxVyZ — Lx(L(Y),Z)-n—(L(Y),Z)Vxn
=VxVyZ - (L(X),VyZ) -n— (VxL(Y),Z) -n—(L(Y),VxZ)-n
—(L(VxY),Z) -n—(L(Y), Z)L(X)

Similarly for VyVxZ

Vixy1Z = Vixy1Z — (L([X,Y], Z))n

0=R(X,Y)Z=VxVyZ-VyVxZ -V xyZ
=VxVyZ —(L(Y),Z)L(X) — {(L(X),VyZ)+ (VxL(Y),Z) + (L(Y),Vx Z))n
—VyVxZ+(L(X),Z)L(Y)+ ((L(Y),VxZ) + (Vy L(X), Z) + (L(X),Vy Z))n
- Vixv1Z + (L([X,Y]), Z)n

Projecting to TM, we get the Gauss equation

= R(X,Y)Z = (L(Y), Z) L(X) = (L(X), Z) L(Y)
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Projecting to n

= 0= —(LORVvZ) — (VX L(Y), ) —(LI¥) VX Z) + (LOO-VXZ]
+(Vy L(X), Z) + (LXK v 7] + (L([X,Y]), Z)

= (L(X,Y)). Z) = (VxL(Y), Z) — (VyL(X),Z)  VX,Y,Z € X(M)

= L([X,Y]) = VxL(Y) - VyL(X)  VX,Y € X(M)

~~

This is called the Codazzi-Mainardi equation. We can apply the Gauss equation
to any smooth hypersurface M C R"*!. If M is an affine hyperplane, G is
constant, so L= DG =0= R(X,Y)Z =0.
If M c R™! is the unit sphere S™, then G = Id = L = DG = Id. By the
Gauss equation
R(X,Y)Z=(Y,2)X — (X, Z2)Y

X,Y €7T,5m", linear independent:

- (R(X, Y)Y, X) CYY(X, X)) — (XY (Y, X)
KXY =y y) - xy)e - ®XOmy) - (®ye

If M = S™(r) is the sphere of Radius r in R"*!, then

1 1 1 1
G=-=L=-=RX,Y)Z==({(V,2)X —(X,2)Y K(X,)Y)=—
Lo r= o Rz = (2 - (x2)y) = KXy =
Remark. (M,( , )) is any Riemannian manifold. Consider (M,\(, )) for
——

(oA
A > 0. Then K(X,Y)< )

[RVPN

1
= KXY)( )



Chapter 14

The Euler Class

If E 5 M is a vector bundle of rank 1, (', ) a metric on E, then every metric
compatible connection V is flat.

Now take E of rank k£ = 2. V is connection on E compatible with a metric
(, ). Let s1, s2 be a local orthogonal frame with respect to (, ).

2
. . 0 —W12
Vs; = lel-j ® s; with w;; skew-symmetric <—w21 0 >
j=

Then
2
Qij = dwij — Zwil A wij
=1

(1;; is also skew-symmetric.

2
912 = dw12 — Zwu N wig = dw12 = dng =0
=1

We assume now that F is oriented and sq, sp are positive with respect to this
orientation. Let s}, s5 be another local orthogonal frame, which is also positive

oriented.
2
5 = Gij S
=1

si, s; are defined on E| , g;; € C*(U). g € SO(2) = S* at every point.

“(e) ) (o W) (000 i)

88



CHAPTER 14. THE EULER CLASS 89

The last equality is because SO(2) is abelian. This shows that © and therefore
Q15 is independent of the choice of oriented orthogonal frames s;, ss.
Q15 is a globally well-defined closed 2-form.

Definition 14.1. e(E) :=

1
—ﬁ[ﬂu] € Hip(M).

Proposition 14.1.

(1)
(2)

e(E) = —e(E), E is the vector bundle with opposite orientation.

If F admits a section s, which is nowhere zero, then e(E) = 0 [without loss
of generality (s,s) = 1. Then 0 = 2(s, Vs), so (s,Vs) = 0. Take s; = s.
There is a unique $so, s.t. s1, So are orthogonal and oriented. Globally
Oqg = dw1a, S0 [Q} =0¢€ H(%R(M)]

The Euler class is independent of the choice of V (compatible with a fixed
{, ). [Let VO, V! be two different connections compatible with { , ).

rank=1

——
Then V! -V = A € Q! (Skew-End(E)), with respect to a local orthogonal

frame sq, So:
0 wh) (0 wh)_ (0 a
—wl, 0 —wly 0 —a 0

a € QY(M) is a globally well-defined 1-form, where a has trivial gauge
transformation.

wip =wih +a = Uy =0 +da = [Q,] =[Q0,] € Hiz(M)]

E of rank k is trivial if and only if sy, ..., s sections, which are every-
where linear independent. FE oriented of rank k is trivial if and only if
3s1,...,8,—1 which are everywhere linear independent.

e(F) is independent of the choice of metric.

[Sketch of proof: E x [0,1] LISINGY ) 0 [0,1] as a E vector bundle on

M x [0,1]. On E(, ), we consider the metric (1 —¢)(—, —)9 +t(—, —)L =

x

((—, —))a,t- This is a metric on E, which restricts to E = F as
Mx{0}

{, )0 and to E as (, ). Let ¥ be a connection on E compatible
Mx{1}

with ((, )). From its curvature, we determine e(E) € H3p(M x [0,1]).

Let 49,41 : M — M x [0, 1], where io(x) = (x,0) and i1(z) = (z,1). Then

e(E,( >0) = ige(E, ((, ))). Similarly, e(E, (, >1> =ije(E, ((, ). =

e(E,{(,)%) =e(E,{, )!), because i = Id = ij. By Poincaré lemma, i

and i} are homotopic maps induce the same Hyg. ]

Example 14.1. M = S%. Take two copies of R? x R?. With the standard ( , )
on the second factor. And standard flat connection compatible with ( , ). Take
P (R?\ {0}) x R? — (R?\ {0}) x R? where g : R\ {0} — SO(2). X; =

(@) (= st



CHAPTER 14. THE EULER CLASS 90

R? x R2%, Xy = R? x R? are identified via 1 to get an oriented rank 2 vector
bundle £ — S?, with a metric.

Let VY be the given flat connection on E , coming from Xj.

S2\{N}

Let V! be the given flat connection on E , coming from X5.
S2\{S}
Choose a smooth partition of unity p, 1 — p subordinate to the covering of S2

by S2\ {N} and 5%\ {S}. Write S?\ {N, S} = S! x R.

p:STxR—-R
(¢, 1) = p(t)

p extends to a smooth function on S?. Define V = pV! + (1 — p)V°. This is a
metric connection on £ — S?. Over S? \ {N, S}, consider the frame which is
parallel for V° given by the standard basis for R?. With respect to this frame
the connection matrix for V is that for V! scaled by p.

Let s/, sb be the parallel frame for V! coming from X5. In this frame, V?
has zero connection matrix.

0=w' =dgg~ "+ gwg "

= gug~! = —dgg™"
= w=—g ldg
2
wiz = — Zg“dgig
i=1
Take g : S* x R — SO(2) , we could also take g = e"¥.

sing  cosp

(0,1) > (cos<p —sin Lp)

= wiz = —g''dgis — ¢"%dgas = di
_ 0 pde
In the frame s1, s, V is represented by (pdcp 0 )

D2 =d(pdp) =dp N dp = @dt A dg
~— dt

Not really exact on S?!

[ou= [ 0n-- ( / :o dtflfj) (S/ dp | = ~(p(00)—p(—00)) 27 = 27 £ 0
S2 S1xR 1

with g = "% : /ng = —2mn, ¢ is called clutching map. We can do this for

5'2
general S™.

If E, F are oriented preserving isomorphism, then e(F) = e(F).
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If M is oriented, n-dimensional, then
/ H)M)—R
M

is well defined and surjective.
M is an oriented 2-dimensional manifold, compact without boundary, then

/:HgR(M) —R
M

If M is connected, this is an isomorphism.

Definition 14.2. x(FE) := /e(E) is the Euler number of E.
M

Let M be oriented 2-dimensional manifold, and (, ) a Riemannian metric.

How do we determine e(T'M)?

Let X7, X2 be a local orthogonal frame for (T'M,( , )), s.t. (X1,X2) is
positive oriented.

K(T,M) = (R(X1, X2) X2, X1) = (Vx, Vx, Xo = Vx,Vx, X2 = V[x, x,) X2, X1)
where V., ¢ = 1,2 is the Levi-Civita connection.

VX2X2 = —w12(X2)X1
Vx, X1 = —wi2(X1)X1
Vix, x5 X2 = —wi2([X1, X2]) X3

VXl = W12 ® X2
VX; = -wp® X3

Therefore,

K(T,M) = (Vx, (—wi2(X2)X1) = Vx, (—wi2(X1) X1) + wi2(([X1, Xo2]) X1, X1)

= (—Lx,wi2(X2) - X1 — wi2(Xa3¥x5, X1 + Lx,wi2(X1) - X3
+W+ wi2([ X1, X)) X1, X7)

= —Lx,wi2(X2) + Lx,wi2(X1) + wi2([X1, X2])

= —(dw12) (X7, X2)

= —Q12(X1, Xo)

[M n-dimensional oriented, (, y on TM = 3! dvol € Q™ (M) with dvol(X1, ..., X,) =
1 for any oriented orthonormal basis X1, ..., X, of T,M. dvol = X{A---ANX} ]

Theorem 14.2 (Gauss Bonnet Theorem). On an oriented 2-dimensional man-
ifold with a metric, the equation K(T,M) = —Q;2(X7,X2) is equivalent to
015 = —K - dvol. The Euler number of TM = M is

1 1
X(TM) = —*/912 = f/K-dvol
2T 2
M M

where x(T'M) is the Euler character of M.



CHAPTER 14. THE EULER CLASS 92

Example 14.2. M = S?(R) is the 2-sphere of radius R in R3.

B Ar R? B

2y L / Cdvol — — - pol(5? i
x(T'S5%) = o K - dvol = 52 vol(S*(R)) = i

S%(R)
Example 14.3. Suppose the 2-manifold M admits a vector field without zeroes.
Then )
x(TM)=0= %/K-dvol
M

Corollary 14.3 (Hedgehog/Hairy Ball Theorem). S? does not admit a vector
field without zeroes.

Example 14.4. M = T?.

flow without stationary points

K>0

K <0

M an oriented 2-dimensional manifold, X € X(M) a vector field with isolated
Zeroes.

O

M connected, compact = X has finitely many zeroes p1, ..., pk.

Choose disjoint open neighborhoods Uy, ...,Uy of p1,...,px, with each U;
diffeomorphic to a disc of radius 2 in R? and V; = D(1) in.

We equip M with a Riemannian metric, which restricts to each U; as the
flat metric of U; C R2.

On M\ {p1,...,pr}, define X; = with respect to our metric.

X
11l
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Complete X; to an oriented orthonormal basis { X7, Xo} on M\{p1,...,pr}

1
T™)=— | K-
x(TM) 27r/ dvol

M

flat around poles 1

— K - dvol
2
M\(UW)
1
= —— Q
o 12
M\(U Vi)
Stokes _i / w
= “or 12
O(M\(UV;))
1 n
= % w12
z:lavi
Claim 14.4. X{df = wia.
Proof. Notice that
X4 551—>Sl dG(Xl):l
p— Xi(p)

do

(X;dO)(Y) = dB((DX,)Y) —2OBelO 49(Ty X, ) = df(wi2(Y) Xa) = wi2Y
O

/ df = " deg | X,
ovi/) 4 i=1 Vi

=Index(X1,p:)

1 & . 1 &
i=1

i:lavi

This is called the Poincaré~Hopf Theorem.
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