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Chapter 1

Categories

1.1 Introduction
This brief introduction is taken from Awodey’s book.

What is category theory? As a first approximation, one could say that
category theory is the mathematical study of (abstract) algebras of functions.

The historical development of the subject has been, very roughly, as follows:

• 1945: Eilenberg and Mac Lane’s “General theory of natural equivalences”
was the original paper, in which the theory was first formulated.

• Late 1940s: The main applications were originally in the fields of algebraic
topology, particularly homology theory, and abstract algebra.

• 1950s: Grothendieck et al. began using category theory with great success
in algebraic geometry.

• 1960s: Lawvere and others began applying categories to logic, revealing
some deep and surprising connections.

• 1970s: Applications were already appearing in computer science, linguis-
tics, cognitive science, philosophy, and many other areas.

One very striking thing about the field is that it has such wide-ranging appli-
cations. In fact, it turns out to be a kind of universal mathematical language like
Set Theory. As a result of these various applications, category theory also tends
to reveal certain connections between different fields like Logic and Geometry.

In fact, just as the idea of a topological space arose in connection with
continuous functions, so also the notion of a category arose in order to define
that of a functor, at least according to one of the inventors. The notion of a
functor arose - so the story goes on - in order to define natural transformations.
One might as well continue that natural transformations serve to define adjoints,
so we have the following succession:

category⇝ functor⇝ natural transformation⇝ adjunction.

Before getting down to business, let us ask why it should be that category
theory has such far-reaching applications. Well, we said that it is the abstract
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theory of functions, so the answer is simply this:

Functions are everywhere!

And everywhere that functions are, there are categories. Indeed, the subject
might better have been called abstract function theory, or, perhaps even better:
archery.

1.2 Definition
Definition 1.1. A category C consists of the following data:

(1) objects: A,B,C, . . . (not necessarily sets). The class of objects of C is
denoted by Ob(C).

(2) arrows (or morphisms): f, g, h, . . . (not necessarily functions). The class
of arrows of C is denoted by Mor(C). The class of arrows between two
objects A,B of C is denoted by HomC(A,B) or MorC(A,B).

(3) For every arrow f there are objects dom(f) and cod(f) called the domain
and the codomain of f respectively. We write f : A → B, where A =
dom(f) and B = cod(f).

(4) For every arrows f : A → B and g : B → C there is an arrow denoted
g ◦ f : A→ C and called the composite of f and g.

(5) For every object A there is an arrow denoted 1A : A → A and called the
identity arrow.

which satisfy the following axioms:
(i) Associativity:

(h ◦ g) ◦ f = h ◦ (g ◦ f), ∀f : A→ B, g : B → C, h : C → D

(ii) Unit:
f ◦ 1A = f = 1B ◦ f, ∀f : A→ B

If A,B are objects and f : A→ B is an arrow in a category C, then sometimes
we simply denote A,B ∈ C and f ∈ C instead of A,B ∈ Ob(C) and f ∈
HomC(A,B).

1.3 Examples
1.3.1 The Category Set

• objects: sets

• arrows: functions

• composition: composition of functions

• identity arrow: identity function

There are variations of this category obtained by restricting the sets and/or
the functions, such as: the category Setfin of finite sets and functions, the
category of sets and injective functions etc.
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1.3.2 Categories of Structured Sets
(1) The category of groups and group homomorphisms, denoted by Grp. The

category of abelian groups and group homomorphisms, denoted by Ab.

(2) The category of monoids and monoid homomorphisms, denoted by Mon.

(3) The category of unitary rings and unitary ring homomorphisms, denoted
by Ring. The category of commutative unitary rings and unitary ring
homomorphisms, denoted by CRing.

(4) The category of rings and ring homomorphisms, denoted by Rng. The cat-
egory of commutative rings and ring homomorphisms, denoted by CRng.

(5) The category of fields and field homomorphisms, denoted by Field.

(6) The category of left vector spaces over a field K and K-linear maps, de-
noted by Vect(K). The category of left modules over a unitary ring R
and R-module homomorphisms, denoted by Mod(R).

(7) The category of graphs and graph homomorphisms, denoted by Graph.

(8) The category of topological spaces and continuous maps, denoted by Top.

(9) The category of real Banach spaces and linear contractions, denoted by
Ban.

(10) The category of differentiable (smooth) manifolds and differentiable (smooth)
mappings, denoted by Man.

(11) The category of preordered sets and monotone mappings, denoted by
Preord. The category of posets (partially ordered sets) and monotone
mappings, denoted by Pos.

Remark. All the above examples are concrete categories, which roughly speak-
ing means that the objects are some sets and the arrows are some functions.

1.3.3 The Category Rel

• objects: sets

• arrows: relations r = (A,B,R), where R ⊆ A×B

• composition: composition of relations, defined for relations r = (A,B,R)
and s = (B,C, S) as s ◦ r = (A,C, S ◦R), where

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}

• identity arrow: for every set A, the identity arrow is the equality relation
δA = (A,A,∆A), where ∆A = {(a, a) | a ∈ A}.
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1.3.4 Another Category of Finite Sets: Mat(K)

• Objects: finite sets (or simply natural numbers)

• arrows: for every finite sets A with |A| = m ∈ N and B with |B| = n ∈ N,
define an arrow A → B to be a matrix in Mm,n(K) (where K is a fixed
field).

• composition: multiplication of matrices

• identity arrow: identity matrix

1.3.5 Poset Categories
Given a poset (P,⩽), we may construct an associated category called a poset
category:

• Objects: the elements of P

• arrows: we say that there is an arrow between a, b ∈ P , and we write
a→ b, if and only if a ⩽ b.

• composition: composition of arrows in the sense that a → b → c if and
only if a ⩽ b ⩽ c

• identity arrow: we have a→ a for every object a ∈ P .

1.3.6 Monoid Categories
Given a monoid (M, ·), we may construct an associated category:

• objects: the single object M

• arrows: the elements of M

• composition: the multiplication of the elements of M

• identity arrow: the identity element from the monoid

1.3.7 Finite Categories
(1) The category 0: it has no objects and no arrows.

(2) The category 1:
∗

which has a single object ∗, the identity arrow as the single arrow and the
composition is given by iteration of the identity arrow.

(3) The category 2:
∗ → ∗

which has two objects, the identity arrows and one non-identity arrow
between the two objects and the composition is given by two succesive
arrows.
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(4) The category 3:
∗ ∗

∗

f

g◦f
g

which has 3 objects, the identity arrows and the 3 depicted non-identity
arrows between the objects and the composition is given by two successive
arrows.

1.3.8 The Category Cat
Definition 1.2. A covariant functor (or simply functor) between two cat-
egories C and D is a mapping of objects of C to objects of D and of arrows of C
to arrows of D, denoted by

F : C → D

satisfying the axioms:

(i) For every f : A→ B in C, we have F (f) : F (A)→ F (B) in D.

(ii) For every object A of C, we have F (1A) = 1F (A).

(iii) For every composable pair of arrows f : A → B and g : B → C in C, we
have

F (g ◦ f) = F (g) ◦ F (f)

hence the commutativity of the following left diagram implies the commu-
tativity of the right diagram:

A B

C

f

g◦f
g ⇒

F (A) F (B)

F (C)

F (f)

F (g◦f)
F (g)

For functors F : C → D and G : D → E , one defines the composite functor
G ◦ F : C → E by

(G ◦ F )(C) = G(F (C)), for every object C of C
(G ◦ F )(f) = G(F (f)), for every arrow f : A→ B of C

The category Cat:

• objects: small categories (that is, categories C such that Ob(C) and Mor(C)
are sets)

• arrows: covariant functors

• composition: composition of functors

• identity arrow: identity functor 1C : C → C for every category C, defined
by the identity on objects and on arrows.
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1.3.9 A Category form Logic
Given a deductive system of logic, we may construct an associated category of
proofs:

• objects: formulas ϕ,ψ, . . .

• arrows: implications ϕ→ ψ

• composition: succesive implications ϕ→ ψ → ∆

• identity arrow: each formula implies itself

1.3.10 A Category from Computer Science
Given a functional programming language L, we may construct an associated
category:

• objects: data types of L

• arrows: computable functions on L (“processes”)

• composition: succesive computable functions X → Y → Z, where the
output of the first arrow is the input of the second arrow

• identity arrow: “do nothing” procedure

1.3.11 A Category from Physics
• objects: physical system A,B,C, . . .

• arrows: physical processes which take a physical system of type of A into
a physical system of type B

• composition: sequential composition of physical processes

• identity arrow: the physical process leaving the physical system invariant

1.4 Isomorphisms
Definition 1.3. In any category C, an arrow f : A → B is called an isomor-
phism if there is an arrow g : B → A such that

g ◦ f = 1A and f ◦ g = 1B

Since inverses are unique, we write g = f−1.
We say that A is isomorphic to B, written A ∼= B if there exists an iso-

morphism between them.

We recall the following famous theorem from Group Theory.

Theorem 1.1 (Cayley). Every group is isomorphic to a subgroup of a sym-
metric group.
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Proof. Let (G, ·) be a group and consider the symmetric group

SG = {g : G→ G | g is bijective}.

For every a ∈ G, define

ta : G→ G by ta(x) = ax, ∀x ∈ G.

One proves that ta ∈ SG, that is ta is bijective. We may now define

f : G→ SG by f(a) = ta, ∀a ∈ G

One shows that f is an injective homomorphism. Then Ker f = {1}.
By the first isomorphism theorem, it follows that

G ∼= G/{1} ∼= G/Ker f ∼= Im f.

But Im f is a subgroup of SG, so that we are done. Note that Im f is sometimes
called the Cayley representation of G.

Remark. Note the two different levels of isomorphisms that occur in the proof
of Cayley’s theorem. There are bijective functions g : G → G, which are
isomorphisms in Set, and there is the isomorphism between G and Im f in
Grp. Cayley’s theorem says that any abstract group can be represented as a
“concrete” one, that is, a subgroup of a symmetric group.

We may give the following category-theoretic analogue.
Theorem 1.2. Every category C with a set of arrows is isomorphic to one in
which the objects are sets and the arrows are functions.
Proof. Define the Cayley representation C of C, that is, the category correspond-
ing to C via the isomorphism, to be the following concrete category:

• objects: sets of the form C̄ = {f ∈ C | cod(f) = C} for objects C of C

• arrows: functions ḡ : C̄ → D̄ for arrows g : C → D in C, defined by
ḡ(f) = g ◦ f for every f : X → C in C̄.

One shows the required properties.

1.5 Constructions on Categories
1.5.1 Product Category
Let C and D be categories. The product category C ×D is defined as follows:

• objects: pairs (C,D) for some objects C ∈ C and D ∈ D

• arrows: pairs (f, g) for some arrows f ∈ C and g ∈ D

• composition: for every composable arrows (f, g), (f ′, g′) ∈ C × D, their
composite is defined as

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′)

• identity arrow: for every object (C,D) ∈ C × D, the identity arrow is
1(C,D) = (1C , 1D).

Clearly, the construction may be generalized for a finite number of categories.
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1.5.2 Opposite Category
Let C be a category. The opposite category Cop of C is defined as follows:

• objects: the objects of C. We denote by C∗ the object C of C viewed as
an object of Cop.

• arrows: the arrows of the form f∗ : B∗ → A∗ for some arrow f : A → B
in C.

• composition: for every arrows f∗ : B∗ → A∗ and g∗ : C∗ → B∗ in Cop,
their composite is defined as

f∗ ◦ g∗ = (g ◦ f)∗

A B

C

f

g◦f
g ⇒

A∗ B∗

C∗

f∗

g∗

(g◦f)∗

• identity arrow: for every object A∗ ∈ Cop, the identity arrow is 1A∗ =
(1A)

∗.

1.5.3 Arrow Category
Let C be a category. The arrow category C→ of C is defined as follows:

• objects: the arrows of C.

• arrows: an arrow g = (g1, g2) : f → f ′, where f : A→ B and f ′ : A′ → B′

are arrows of C, is a square

A B

A′ B′

f

g1 g2

f ′

where g1 : A→ A′ and g2 : B → B′ are arrows in C, which is commutative
in the sense that

f ′ ◦ g1 = g2 ◦ f

• composition: for every composable arrows (h1, h2) and (g1, g2) in C→,
their composite is defined as

(h1, h2) ◦ (g1, g2) = (h1 ◦ g1, h2 ◦ g2) .

• identity arrow: for every object f : A → B in C→, the identity arrow is
1f = (1A, 1B).
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1.6 Free Categories
Let A be a set, which will be called an “alphabet”. Denote by A∗ the set of all
“words” of with “letters” from A, that is, strings of elements from A. We call
A∗ the Kleene closure of A. Denote by e the empty word. We immediately
have the following result.

Theorem 1.3. Let A be a set. Consider on A∗ the operation “.” defined by
concatenation. Then (A∗, ·) is a monoid with identity element e, called the free
monoid on A.

Theorem 1.4 (Universal Mapping Property of the Free Monoid). With the
above notation, there is an injective monoid homomorphism i : A ↪→ A∗ with
the property that for every monoid N and for every function f : A→ N , there
is a unique monoid homomorphism f̄ : A∗ → N such that f̄ ◦ i = f , that is, the
following diagram is commutative

A A∗

N

i

f
f

Proof. Let i : A ↪→ A∗ be the inclusion homomorphism, which is an injective
monoid homomorphism. Define f̄ : A∗ → N by

f̄(e) = eN

f̄(w) = f (a1) · · · f (an) , ∀w = a1 · · · an ∈ A∗

One checks that f̄ is a monoid homomorphism and f̄(a) = f(a) for every a ∈ A,
that is, f̄ ◦ i = f .

For uniqueness, suppose that there is another monoid homomorphism g :
A∗ → N such that g ◦ i = f . For every w = a1 . . . an ∈ A∗ we have

g(w) = g (a1 · · · an) = g (a1) · · · · · g (an) = f (a1) · · · · · f (an) = f̄ (a1 · · · an) ,

hence f̄ = g.

Corollary 1.5. Universal mapping property of the free monoid determines it
uniquely up to an isomorphism.

Proof. Suppose that M and N are free monoids on a set A. Consider the
inclusion homomorphisms i : A→M and j : A→ N . Since M is a free monoid,
by universal mapping property there is a monoid homomorphism α : M → N
such that α ◦ i = j. Since N is a free monoid, by universal mapping property
there is a monoid homomorphism β : N → M such that β ◦ j = i. It follows
that (β ◦ α) ◦ i = i. But we also have 1M ◦ i = i. Then by the uniqueness from
universal mapping property we must have β ◦ α = 1M .

A M

N

i

j
α

A N

M

j

i
β

A M

M

i

i
β◦α=1M

Similarly, we have α◦β = 1N . Hence α :M → N is a monoid isomorphism.
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Next let us see how can we generalize the above results to categories.
To each category C we may associate a graph G = (V,E), where the class

V of vertices consists of the objects of C, while the class E of edges consists
of the arrows of C. Then we have two functions s : E → V (source) defined
by s(e) = v1 for every arrow e : v1 → v2, and t : E → V (target) defined by
t(e) = v2 for every arrow e : v1 → v2.

We define the free category on the graph G, denoted by C(G), as follows:

• objects: the vertices of G

• arrows: the paths in G

• composition: the concatenation of paths in G

• identity arrow: for every v ∈ V the identity arrow 1v is the loop on v.

We may define a functor U : Cat→ Graph, called the forgetful functor,
which associates to a category C its underlying graph having as edges the arrows
of C, and as vertices the objects of C, and to a functor between categories its
underlying graph homomorphism (that is, a functor without the conditions on
composition and identity). One may prove the following result.

Theorem 1.6 (Universal Mapping Property of the Free Category on a Graph).
With the above notation, there is a graph homomorphism i : G → U(C(G))
with the property that for every category D and for every graph homomorphism
f : G→ U(D), there is a unique functor f̄ : C(G)→ D such that U(f̄) ◦ i = f ,
that is, the following diagram is commutative:

G U(C(G))

U(D)

i

f
U(f)

Corollary 1.7. Universal mapping property of the free category on a graph
determines it uniquely up to a graph isomorphism.

1.7 Large, Small and Locally Small Categories
Definition 1.4. A category is called:

(1) small if both classes of objects and arrows are sets.

(2) large if it is not small.

(3) locally small if for every objects C,D ∈ C, HomC(C,D) is a set.

Example 1.1.

(1) The category of finite sets and functions is equivalent to a small category.

(2) Set, Pos, Grp and Top are locally small, but not small.

(3) Cat is large, but not locally small. Indeed, if C is a locally small category
which is not small, and 1 is the category with one object and one arrow,
then functors 1→ C are simply objects of C, so HomCat(1, C) is not a set.
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Abstract Structure

2.1 Epimorphisms and Monomorphisms
Definition 2.1. Let C be a category. An arrow f : A→ B in C is called a:

(1) monomorphism (or briefly mono) if for every arrows g, h : C → A such
that f ◦ g = f ◦ h, we have g = h.

(2) epimorphism (or briefly epi) if for every arrows g, h : B → C such that
g ◦ f = h ◦ f , we have g = h.

(3) bimorphism if it is both a monomorphism and an epimorphism.

Lemma 2.1. Every isomorphism is a bimorphism.

Proof. Let f : A → B be an isomorphism in a category C. Let g, h : C → A
be arrows in C such that f ◦ g = f ◦ h. Compose on the left by f−1 in order
to get g = h. Hence f is a monomorphism. Similarly, one shows that f is an
epimorphism. Thus, f is a bimorphism.

One may also prove the following property.

Proposition 2.2. Let f : A→ B and g : B → C be arrows in a category C.

(1) If f, g are monomorphisms (epimorphisms), then so is g ◦ f .

(2) If g ◦ f is monomorphism, then so is f .

(3) If g ◦ f is epimorphism, then so is g.

Example 2.1.

(1) In Set monomorphisms coincide with injective functions, epimorphisms
coincide with surjective functions, and bimorphisms coincide with isomor-
phisms and with bijective functions.

(2) In many usual concrete categories, monomorphisms coincide with injec-
tive arrows. In not so many usual categories epimorphisms coincide with
surjective arrows.

11
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For instance, in Mon monomorphisms coincide with injective monoid ho-
momorphisms, but epimorphisms do not coincide with surjective monoid
homomorphisms. Indeed, the inclusion map i : N → Z, defined by i(x) =
x, is an epimorphism in Mon, but it is not surjective. This is also an
example of a bimorphism, which is not an isomorphism.

(3) There is a large class of categories, called abelian categories (e.g., the
categories Ab and Vect(K)), in which bimorphisms coincide with isomor-
phisms.

Definition 2.2. Let C be a category. An arrow f : A→ B in C is called a:

(1) section (or split monomorphism) if it has a left inverse arrow, that is,
there is an arrow g : B → A such that g ◦ f = 1A.

(2) retraction (or split epimorphism) if it has a right inverse arrow, that
is, there is an arrow g : B → A such that f ◦ g = 1B .

Remark. An arrow is an isomorphism if and only if it is a section and a
retraction.

Lemma 2.3.

(1) Every section is a monomorphism.

(2) Every retraction is an epimorphism.

Proof.

(1) Let f : A → B be a section in a category C. Hence there is an arrow
r : B → A such that r ◦ f = 1A. Let g, h : B → C be arrows in C such
that f ◦ g = f ◦ h. Then we have

r ◦ f ◦ g = r ◦ f ◦ h,

which implies that g = h. Hence f is a monomorphism.

(2) Similarly, one shows that every retraction is an epimorphism.

One may show the following property.

Proposition 2.4. The following are equivalent for an arrow f : A→ B in any
category C:

(1) f is an isomorphism.

(2) f is both a monomorphism and a retraction.

(3) f is both a section and an epimorphism.

Example 2.2.

(1) In Set every monomorphism (i.e., injective function) is a section, except
those of the form ∅ → A with A 6= ∅. In Set the condition that every
epimorphism is a retraction is equivalent to the axiom of choice.
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(2) In Ab the inclusion homomorphism i : 2Z → Z, defined by i(2x) = 2x,
is clearly a monomorphism. Suppose that it is a section. Then there is a
group homomorphism g : Z→ 2Z such that g ◦ i = 12Z. We have 2g(1) =
g(2) = g(i(2)) = 2, hence 1 = g(1) ∈ 2Z, a contradiction. Therefore, there
are monomorphisms, which are not sections.
In Ab the homomorphism f : Z4 → Z2 defined by f(x̄) = x̂ is clearly
an epimorphism. Suppose that it is a retraction. Then there is a group
homomomorphism g : Z2 → Z4 such that f ◦ g = 1Z2

. The order of g(1̂)
divides the order of 1̂, which is 2. Hence g(1̂) ∈ {0, 2}. But then f(g(1̂)) =
0̂ 6= 1̂ = 1Z2

(1̂), a contradiction. Therefore, there are epimorphisms which
are not retractions.

Proposition 2.5. Let F : C → D be a (covariant) functor. Then:

(1) F preserves sections in the sense that if f is a section, then F (f) is also a
section.

(2) F preserves retractions in the sense that if f is a retraction, then F (f) is
also a retraction.

(3) F preserves isomorphisms in the sense that if f is an isomorphism, then
F (f) is also an isomorphism.

Proof. Let f : A→ B be a section in C. Then there is an arrow g : B → A such
that g ◦ f = 1A. This implies that

F (g) ◦ F (f) = F (g ◦ f) = F (1A) = 1F (A)

hence F (f) is a section in D. Similarly, F preserves retractions. The fact that
F preserves isomorphisms is a consequence of the first two properties.

2.2 Initial and Terminal Objects
Definition 2.3. Let C be a category. An object C ′ of C is called:

(1) initial if for every object C of C, there is a unique arrow C ′ → C.

(2) terminal if for every object C of C, there is a unique arrow C → C ′.

Sometimes an initial object is denoted by 0, while a terminal object is de-
noted by 1.

Proposition 2.6. Initial and terminal objects are unique up to an isomorphism.

Proof. Assume that C ′, C ′′ are initial objects of a category C. Then there is a
unique arrow f : C ′ → C ′′ and a unique arrow g : C ′′ → C ′. Note that we have
the arrows g ◦ f : C ′ → C ′ and 1C′ : C ′ → C ′. Since C ′ is an initial object, we
must have g ◦ f = 1C′ . Also, note that we have the arrows f ◦ g : C ′′ → C ′′

and 1C′′ : C ′′ → C ′′. Since C ′′ is an initial object, we must have f ◦ g = 1C′′ .
Hence f : C ′ → C ′′ is an isomorphism. Hence initial objects are unique up to
an isomorphism.

Similarly, one shows that terminal objects are unique up to an isomorphism.
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Example 2.3.

(1) In Set the initial object is ∅, while the terminal object is any single-
element set.

(2) In Grp the initial object is the trivial group, while the terminal object is
again the trivial group.

(3) In Ring the initial object is Z, while the terminal object is the trivial ring.
Note that there is a unique unitary ring homomorphism Z→ R for every
ringR with identity 1′, which is defined by

f(n) = n · 1′, ∀x ∈ Z

We first show that if f does exist, then it is unique. So, suppose that
f : Z → R is a unitary ring homomorphism. Then f(0) = 0′ = 0 · 1′,
where 0′ is the zero element of R. For every k ∈ N∗, we have:

f(k) = f(1 + · · ·+ 1︸ ︷︷ ︸
k times

) = f(1) + · · ·+ f(1)︸ ︷︷ ︸
k times

= 1′ + · · ·+ 1′︸ ︷︷ ︸
k times

= k · 1′

f(−k) = −f(k) = − (k · 1′) = (−k) · 1′

Hence f(n) = n · 1′ for every n ∈ Z.
Now we show that the function f is a unitary ring homomorphism. For
every m,n ∈ Z, we have:

f(m+ n) = (m+ n) · 1′ = m · 1′ + n · 1′ = f(m) + f(n),
f(m · n) = (m · n) · 1′ = (m · 1′) · (n · 1′) = f(m) · f(n)

and f(1) = 1 · 1′ = 1′. Hence f is a unitary ring homomorphism.

(4) View the poset (Z,⩽) as a poset category. This category has neither an
initial object, nor a terminal object.

2.3 Products
Definition 2.4. Let C be a category and A,B objects of C. A product di-
agram for A and B consists of an object P and arrows, called canonical
projections

A
p1←− P p2−→ B

satisfying the following universal mapping property: given any diagram of the
form

A
f1←− X f2−→ B

there is a unique arrow u : X → P such that

p1 ◦ u = f1 and p2 ◦ u = f2

that is, the following diagram is commutative:
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X

A P B

u
f1 f2

p1 p2

We denote the product of A and B by (P, p1, p2). Sometimes P is also denoted
by A

∏
B or A×B.

Remark. Sometimes (especially in the so-called additive categories), the canon-
ical projections p1 : A × B → A and p2 : A × B → B are also denoted by[
1 0

]
: A × B → A and

[
0 1

]
: A × B → B respectively. The unique arrow

u : X → A×B such that p2 ◦ u = f1 and p2 ◦ u = f2 is also denoted by[
f1
f2

]
: X → A×B

Then equalities involving compositions of arrows such as p1◦u = f1 and p2◦u =

f2 may be rewritten in terms of matrix multiplications as
[
1 0

]
·
[
f1
f2

]
= f1 and[

0 1
]
·
[
f1
f2

]
= f2.

Remark. Note that the canonical projections p1 and p2 need not be epimor-
phisms. For instance, consider the category described by the following graph:

A P B C
p1 p2

g

h

such that g ◦ p2 = h ◦ p2. Then (P, p1, p2) is a product of A and B, but p2 is
not an epimorphism, because we have g ◦ p2 = h ◦ p2 and g 6= h.

As usual, universal mapping property insures the following uniqueness result.

Proposition 2.7. The product is unique up to an isomorphism.

Proof. Suppose that (P, p1, p2) and (Q, q1, q2) are products of objects A and B
of a category C. Since (Q, q1, q2) is a product, there is a unique arrow i : P → Q
such that q1 ◦ i = p1 and q2 ◦ i = p2. Since (P, p1, p2) is a product, there is a
unique arrow j : Q → P such that p1 ◦ j = q1 and p2 ◦ j = q2. Hence we have
the following commutative diagram:

P

A Q B

P

p1 p2
i

q1 q2

jp1 p2

It follows that p1 ◦(j ◦ i) = p1 and p2 ◦(j ◦ i) = p2. But we also have p1 ◦1P = p1
and p2◦1P = p2, and by the uniqueness condition of universal mapping property
we have j ◦ i = 1P . Similarly, one shows that i ◦ j = 1Q. Hence i : P → Q is an
isomorphism.
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More generally, one may define a product of an arbitrary family of objects
of a category, which is again unique up to an isomorphism.

Definition 2.5. A product of a family (Ai)i∈I of objects of a category C
consists of an object P , also denoted by

∏
i∈I

Ai, and a family (pi)i∈I of arrows,

where pi : P → Ai for every i ∈ I, satisfying the following universal mapping
property: given any object X of C and any family (fi)i∈I of arrows, where
fi : X → Ai for every i ∈ I, there is a unique arrow u : X → P such that
pi ◦ u = fi for every i ∈ I.

2.4 Examples of Products
2.4.1 The Category Set
The product of two sets A and B is

(A×B, p1, p2)

where p1 : A×B → A is the function defined by p1(a, b) = a, and p2 : A×B → B
is the function defined by p2(a, b) = b.

Let X be a set and let f1 : X → A and f2 : X → B be functions. We
look for a unique function u : X → A × B such that the following diagram is
commutative:

X

A A×B B

f1 f2u

p1 p2

that is, p1◦u = f1 and p2◦u = f2. These equalities are equivalent to p1(u(x)) =
f1(x) and p2(u(x)) = f2(x) for every x ∈ X. This means that

u(x) = (f1(x), f2(x)) , ∀x ∈ X

Note that u is uniquely determined by this definition.
The construction of a product may be easily generalized to an arbitrary

family of sets.

2.4.2 The Category Grp

The product of two groups (G1, ·) and (G2, ·) is

((G1 ×G2, ·) , p1, p2)

where p1 : G1 × G2 → G1 is the function defined by p1 (g1, g2) = g1, and
p2 : G1 ×G2 → G2 is the function defined by p2 (g1, g2) = g2.

Note that G1 ×G2 is a group with respect to the operation defined by

(x1, x2) · (x′1, x′2) = (x1 · x′1, x2 · x′2) , ∀ (x1, x2) , (x′1, x′2) ∈ G1 ×G2

Let (X, ·) be a group and let f1 : X → G1 and f2 : X → G2 be group
homomorphisms. We look for a unique group homomorphism u : X → G1×G2

such that the following diagram is commutative:
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X

G1 G1 ×G2 G2

f1 f2
u

p1 p2

that is, p1◦u = f1 and p2◦u = f2. These equalities are equivalent to p1(u(x)) =
f1(x) and p2(u(x)) = f2(x) for every x ∈ X. This means that

u(x) = (f1(x), f2(x)) , ∀x ∈ X

Note that u is uniquely determined by this definition.
We still need to prove that u is a group homomorphism. For every x1, x2 ∈ X

we have

u (x1 · x2) = (f1 (x1 · x2) , f2 (x1 · x2)) = (f1 (x1) · f1 (x2) , f2 (x1) · f2 (x2))
= (f1 (x1) , f2 (x1)) · (f1 (x2) , f2 (x2)) = u (x1) · u (x2)

hence u is a group homomorphism.
The construction of a product may be easily generalized to an arbitrary

family of groups.

2.4.3 Poset Categories
Let (L,⩽) be a lattice. Hence every two elements of L have an infimum (i.e.,
greatest lower bound). Since (L,⩽) is a poset, we may view it as a poset
category. Recall that its objects are the elements of L, while an arrow x → y
does exists if and only if x ⩽ y, where x, y ∈ L.

The product of two elements x, y ∈ L is

(inf(x, y), p1, p2)

where p1 : inf(x, y)→ x and p2 : inf(x, y)→ y are the unique arrows having the
given domains and codomains.

Let z ∈ L and let z → x and z → y be arrows. This means that z ≤ x and
z ≤ y. We look for a unique arrow u : z → inf(x, y) such that the following
diagram is commutative:

z

x inf(x, y) y

u

This means that z ⩽ inf(x, y). But this is true, because z is a lower bound of x
and y, while inf(x, y) is the greatest lower bound of x and y.

Note that if a poset (L,⩽) is not a lattice, two elements of L might not have
a product.

The construction of a product may be easily generalized to an arbitrary
family of elements, when (L,⩽) is a complete lattice, that is, every family of
elements of L has an infimum and a supremum.
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2.5 Categories with Products
Definition 2.6. A category C is said to have (binary) products if any family
of (two) objects of C has a product.
Example 2.4. We have seen that Set and Grp have (binary) products, while
poset categories may not have products.

Let C be a category with binary products, and let f : A→ B and f ′ : A′ →
B′ be arrows in C. We want to define a product f × f ′ : A×A′ → B ×B′ of f
and f ′.

Consider the products (A×A′, p1, p2) and (B ×B′, q1, q2). Let f1 = f ◦ p1
and f2 = f ′ ◦ p2. By universal mapping property of the product (B×B′, q1, q2)
there is a unique arrow u : A×A′ → B ×B′ such that the following diagram is
commutative:

A A×A′ A′

B B ×B′ B′

f

p1 p2

u f ′

q1 q2

that is, q1 ◦ u = f1 = f ◦ p1 and q2 ◦ u = f2 = f ′ ◦ p2. We define f × f ′ = u :
A×A′ → B ×B′.

One may prove the following result.
Proposition 2.8. Let C be a category with binary products. Then we have a
covariant functor R : C × C → C defined by

R (C,C ′) = C × C ′

for every object (C,C ′) of C × C, and

R (f, f ′) = f × f ′ : A×A′ → B ×B′

for every arrow (f, f ′) from C × C with f : A→ B and f ′ : A′ → B′.
For a category C with products, one may generalize this construction to any

finite family of arrows, and define a corresponding functor.
One may show the following associativity property by using universal map-

ping property of the product.
Proposition 2.9. In any category C with binary products, we have

A× (B × C) ∼= (A×B)× C,

where A,B,C are objects of C.

2.6 Hom-sets
In this section, assume that all categories are locally small, that is, HomC(A,B)
is a set for every A,B ∈ C.

Let A be an object and f : B → B′ an arrow in a category C. We define

f∗ = HomC(A, f) : HomC(A,B)→ HomC (A,B
′)

f∗(g) = f ◦ g, ∀g ∈ HomC(A,B)

One may show the following property.
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Proposition 2.10. Let C be a category and let A be an object of C. Then
we have a covariant functor HomC(A,−) : C → Set, called the covariant repre-
sentable functor, defined by

B 7→ HomC(A,B)

on every object B of C and

f 7→ f∗ = HomC(A, f) : HomC(A,B)→ HomC (A,B
′)

for every arrow f : B → B′ in C.

One may show the following property.

Proposition 2.11. Let C be a category with binary products. Then for every
object A of C, the covariant functor HomC(A,−) : C → Set preserves binary
products, that is, for every C,D ∈ C, there is a bijection (i.e., isomorphism in
Set):

HomC(A,C ×D) ∼= HomC(A,C)×HomC(A,D).

Definition 2.7. A contravariant functor between two categories C and D is
a mapping of objects of C to objects of D and of arrows of C to arrows of D,
denoted by

F : C → D

satisfying the axioms:

(i) For every f : A→ B in C, we have F (f) : F (B)→ F (A) in D.

(ii) For every object A of C, we have F (1A) = 1F (A).

(iii) For every composable pair of arrows f : A → B and g : B → C in C, we
have

F (g ◦ f) = F (f) ◦ F (g)

A B

C

f

g◦f
g ⇒

F (A) F (B)

F (C)

F (f)

F (g)
F (g◦f)

Let A be an object and f : B → B′ an arrow in a category C. We define

f∗ = HomC(f,A) : HomC (B
′, A)→ HomC(B,A),

f∗(g) = g ◦ f, ∀g ∈ HomC (B
′, A) .

Proposition 2.12. Let C be a category and let A be an object of C. Then we
have a contravariant functor HomC(−, A) : C → Set, called the contravariant
representable functor, defined by

B 7→ HomC(B,A)

on every object B of C and

f 7→ f∗ = HomC(f,A) : HomC (B
′, A)→ HomC(B,A)

on every arrow f : B → B′ in C.
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Proof.

(i) For every arrow f : B → B′ in C, we have the following function (arrow
in Set):

f∗ = HomC(f,A) : HomC (B
′, A)→ HomC(B,A)

(ii) For every object B of C, we have

HomC (1B , A) = 1∗B = 1CHom(B,A)

(iii) Let f : B → B′ and g : B′ → B′′ be arrows in C. Then we have the
following functions (arrows in Set)

(g ◦ f)∗, f∗ ◦ g∗ : HomC (B
′′, A)→ HomC(B,A)

For every function h ∈ HomC (B
′′, A), we have

(g◦f)∗(h) = h◦(g◦f) = (h◦g)◦f = g∗(h)◦f = f∗ (g∗(h)) = (f∗ ◦ g∗) (h)

Hence we have (g ◦ f)∗ = f∗ ◦ g∗. It follows that

HomC(g ◦ f,A) = (g ◦ f)∗ = f∗ ◦ g∗ = HomC(f,A) ◦HomC(g,A)

Hence HomC(−, A) : C → Set is a contravariant functor.



Chapter 3

Duality

3.1 The Duality Principle
In the formal definition of a category there are objects A,B,C, . . ., arrows
f, g, h, . . . and four operations given by dom(f), cod(f), 1A, g ◦ f which satisfy
the following seven axioms:

• dom (1A) = A.

• cod (1A) = A.

• f ◦ 1dom(f) = f .

• 1cod(f) ◦ f = f .

• dom(g ◦ f) = dom(f).

• cod(g ◦ f) = cod(g).

• h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Of course, the operation “g ◦ f” is only defined when dom(g) = cod(f).
Given any sentence Σ in the elementary language of category theory, we can

form the “dual statement” Σ∗ by making the following replacements: f ◦ g for
g ◦ f , cod for dom, dom for cod. It is easy to see that then Σ∗ will also be a
well-formed sentence. Next, suppose we have shown a sentence Σ to entail one
∆, that is,

Σ =⇒ ∆,

without using any of the category axioms, then clearly

Σ∗ =⇒ ∆∗

since the substituted terms are treated as mere undefined constants. But now
observe that the axioms for category theory (CT) are themselves “self-dual” in
the sense that we have CT ∗ = CT .

Therefore we have the following formal duality principle.

21
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Proposition 3.1 (Formal duality). For any sentence Σ in the language of
category theory (CT) if Σ follows from the axioms of categories, then its dual
Σ∗ also follows, i.e.,

(CT =⇒ Σ) implies (CT =⇒ Σ∗)

Now assume that Σ holds for any category C. Then Σ holds for any opposite
category Cop. Hence Σ∗ holds in C = (Cop)op for any category C.

Therefore we have the following conceptual form of the duality principle.

Proposition 3.2 (Conceptual duality). For any statement Σ about categories,
if Σ holds for all categories, then Σ∗ holds for all categories.

3.2 Coproducts
Definition 3.1. Let C be a category and let A and B be objects of C. A
coproduct of A and B in C is just the product of A and B in the opposite
category Cop. This means an object Q and arrows q1 : A→ Q and q2 : B → Q,
called canonical injections, satisfying the following universal mapping property:
given any diagram of the form

A
f1−→ Z

f2←− B

there is a unique arrow u : Q→ Z such that

u ◦ q1 = f1 and u ◦ q2 = f2

that is, the following diagram is commutative:

Z

A Q B

f1

q1

u
f2

q2

We denote the coproduct of A and B by (Q, q1, q2). Sometimes Q is also denoted
by A

∐
B or A⊕B.

Remark. Sometimes (especially in the so-called additive categories), similarly
to the case of products, the canonical injections q1 : A → A⊕ B and q2 : B →

A⊕B are also denoted by
[
1
0

]
: A→ A⊕B and

[
0
1

]
: B → A⊕B respectively.

The unique arrow u : A ⊕ B → Z such that u ◦ q1 = f1 and u ◦ q2 = f2 is also
denoted by [

f1 f2
]
: A⊕B → Z

Then equalities involving compositions of arrows such as u◦q1 = f1 and u◦q2 =

f2 may be rewritten in terms of matrix multiplications as
[
f1 f2

]
·
[
1
0

]
= f1

and
[
f1 f2

]
·
[
0
1

]
= f2.

Remark. Note that the canonical injections q1 and q2 need not be monomor-
phisms. Just consider the example with the canonical projections from products
in the opposite category.
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As usual, universal mapping property insures the following uniqueness result.
It follows by the duality principle.

Proposition 3.3. The coproduct is unique up to an isomorphism.

More generally, one may define a coproduct of an arbitrary family of objects
of a category, which is again unique up to an isomorphism.

Definition 3.2. A coproduct of a family (Ai)i∈I of objects of a category C
consists of an object Q, also denoted by

∐
i∈I

Ai or
⊕
i∈I

Ai, and a family (qi)i∈I

of arrows, where qi : Ai → Q for every i ∈ I, satisfying the following universal
mapping property: given any object Z of C and any family (fi)i∈I of arrows,
where fi : Ai → Z for every i ∈ I, there is a unique arrow u : Q→ Z such that
u ◦ qi = fi for every i ∈ I.

Next we present some examples of coproducts in certain categories.

3.2.1 The Category Set
The coproduct of two sets A and B is (A tB, q1, q2), where

A tB = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}

is the disjoint union of A and B, q1 : A → A t B is the function defined by
q1(a) = (a, 1), and q2 : B → A tB is the function defined by q2(b) = (b, 2).

Let Z be a set and let f1 : A → Z and f2 : B → Z be functions. We
look for a unique function u : A t B → Z such that the following diagram is
commutative:

Z

A A tB B

f1

q1

u
f2

q2

that is, u◦q1 = f1 and u◦q2 = f2. These equalities are equivalent to u (q1(a)) =
f1(a) and u (q2(b)) = f2(b) for every a ∈ A and b ∈ B, and furthermore,
u(a, 1) = f1(a) and u(b, 2) = f2(b) for every a ∈ A and b ∈ B. Note that u is
uniquely determined by this definition.

The construction of a coproduct may be easily generalized to an arbitrary
family of sets.

3.2.2 The Category Ab

The coproduct of two abelian groups (A,+) and (B,+) is ((A×B,+), q1, q2),
where q1 : A → A × B is the group homomorphism defined by q1(a) = (a, 0),
and q2 : B → A×B is the group homomorphism defined by q2(b) = (0, b).

Note that A×B is a group with respect to the operation defined by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) , ∀ (a1, b1) , (a2, b2) ∈ A×B.

Let (Z,+) be an abelian group and let f1 : A→ Z and f2 : B → Z be group
homomorphisms. We look for a unique group homomorphism u : A × B → Z
such that the following diagram is commutative:
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Z

A A×B B

f1

q1

u
f2

q2

that is, u◦q1 = f1 and u◦q2 = f2. These equalities are equivalent to u (q1(a)) =
f1(a) and u (q2(b)) = f2(b) for every a ∈ A and b ∈ B, and furthermore,
u(a, 0) = f1(a) and u(0, b) = f2(b) for every a ∈ A and b ∈ B. Note that a
group homomorphism u is uniquely determined by this definition, because we
have

u(a, b) = u((a, 0) + (0, b)) = u(a, 0) + u(0, b) = f1(a) + f2(b)

for every a ∈ A and b ∈ B. One checks that the map u defined as above is really
a group homomorphism.

The construction of a coproduct may be generalized to an arbitrary family
of abelian groups, but in a slightly different manner. For a family (Ai)i∈I of
abelian groups, we denote

⊕
i∈I

Ai =

{
(ai)i∈I ∈

∏
i∈I

Ai | (ai)i∈I has a finite number of non-zero elements
}
.

Note that if I is a finite set, then we have
⊕
i∈I

Ai
∼=

∏
i∈I Ai.

The coproduct of the family (Ai)i∈I of abelian groups is
(⊕

i∈I

Ai, (qi)i∈I

)
,

where for every j ∈ I, qj : Aj →
⊕
i∈I

Ai is the group homomorphism defined by

qj(a) = (ai)i∈I with the properties that aj = a and ai = 0 for every i ∈ I with
i 6= j.

3.2.3 Poset Categories
Let (L,⩽) be a lattice. Hence every two elements of L have a supremum (i.e.,
smallest upper bound). Since (L,⩽) is a poset, we may view it as a poset
category. Recall that its objects are the elements of L, while an arrow x → y
does exists if and only if x ⩽ y, where x, y ∈ L.

The coproduct of two elements x, y ∈ L is (sup(x, y), q1, q2), where q1 : x→
sup(x, y) and q2 : y → sup(x, y) are the unique arrows having the given domains
and codomains.

Let z ∈ L and let x → z and y → z be arrows. This means that x ⩽ z and
y ⩽ z. We look for a unique arrow u : sup(x, y) → z such that the following
diagram is commutative:

z

x sup(x, y) y

u

This means that sup(x, y) ⩽ z. But this is true, because z is an upper bound
of x and y, while sup(x, y) is the smallest upper bound of x and y.

Note that if a poset (L,⩽) is not a lattice, two elements of L might not have
a coproduct.
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The construction of a coproduct may be easily generalized to an arbitrary
family of elements, when (L,⩽) is a complete lattice, that is, every family of
elements of L has an infimum and a supremum.

3.2.4 Categories with Coproducts
Definition 3.3. A category C is said to have (binary) coproducts if any
family of (two) objects of C has a coproduct.

Example 3.1. We have seen that Set and Ab have (binary) coproducts, while
poset categories may not have coproducts.

Let C be a category with binary coproducts, and let f : A → B and f ′ :
A′ → B′ be arrows in C. Dually to the case of products, one may define a
coproduct f ⊕ f ′ : A⊕A′ → B ⊕B′ of f and f ′.

Consider the coproducts (A⊕A′, p1, p2) and (B ⊕B′, q1, q2). Let f1 = q1◦f
and f2 = q2 ◦ f ′. By universal mapping property of the product (A⊕A′, p1, p2)
there is a unique arrow u : A⊕A′ → B ⊕B′ such that the following diagram is
commutative:

B B ⊕B′ B′

A A⊕A′ A′

q1 q2

f

p1

u f ′

p2

that is, u ◦ p1 = f1 = q1 ◦ f and u ◦ p2 = f2 = q2 ◦ f ′. We define f ⊕ f ′ = u :
A⊕A′ → B ⊕B′.

One may prove the following result.

Proposition 3.4. Let C be a category with binary coproducts. Then we have
a covariant functor L : C × C → C defined by

L (C,C ′) = C ⊕ C ′

for every object (C,C ′) of C × C, and

L (f, f ′) = f ⊕ f ′ : A⊕A′ → B ⊕B′

for every arrow (f, f ′) from C × C with f : A→ B and f ′ : A′ → B′.

For a category C with coproducts, one may generalize this construction to
any finite family of arrows, and define a corresponding functor.

One may show the following associativity property by using universal map-
ping property of the coproduct.

Proposition 3.5.

Proposition 3.2.9 In any category C with binary coproducts, we have

A⊕ (B ⊕ C) ∼= (A⊕B)⊕ C

where A,B,C are objects of C.
One may show the following property.
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Proposition 3.6. Let C be a locally small category with binary coproducts.
Then for every object A of C, the contravariant functor HomC(−, A) : C → Set
preserves binary coproducts, that is, for every B,C ∈ C, there is a bijection
(i.e., isomorphism in Set):

HomC(B ⊕ C,A) ∼= HomC(B,A)⊕HomC(C,A)

3.3 Equalizers
Definition 3.4. Let C be a category and let f, g : A → B be arrows in C. An
equalizer of f and g consists of a pair (E, e), where E is an object of C and
e : E → A is an arrow in C such that f ◦ e = g ◦ e and it has the following
universal mapping property: given any object Z and any arrow z : Z → A in
C such that f ◦ z = g ◦ z, there is a unique arrow u : Z → E in C such that
e ◦ u = z.

E A B

Z

e
f

g

u
z

By universal mapping property of an equalizer one deduces the following
result.

Proposition 3.7. An equalizer is uniquely determined up to an isomorphism.

Proposition 3.8. Any equalizer is a monomorphism.

Proof. Let f, g : A → B be arrows in a category C having an equalizer (E, e).
Let α, β : Z → E be arrows in C such that e ◦ α = e ◦ β. Denote z = e ◦ α =
e ◦ β : Z → A. Hence we have

f ◦ z = f ◦ e ◦ α = g ◦ e ◦ α = g ◦ e ◦ β = g ◦ z.

By universal mapping property of the equalizer, there is a unique arrow u : Z →
E such that e ◦u = z. But we also have e ◦α = z and e ◦β = z. Hence we must
have u = α = β. This shows that e is a monomorphism.

3.3.1 The Category Set
The equalizer of two functions f, g : A→ B in Set is the pair (E, e), where

E = {a ∈ A | f(a) = g(a)}

and e : E → A is the inclusion function.
For every a ∈ E we have

(f ◦ e)(a) = f(e(a)) = f(a) = g(a) = g(e(a)) = (g ◦ e)(a),

hence f ◦ e = g ◦ e.
Now let z : Z → A be a function such that f◦z = g◦z. We look for a function

u : Z → E such that e ◦ u = z. This equality is equivalent to e(u(x)) = z(x)
for every x ∈ Z, that is, u(x) = z(x) for every x ∈ Z. Note that z(x) ∈ E,
because f(z(x)) = g(z(x)). Also, the equality u(x) = z(x) uniquely determines
u. Hence (E, e) is an equalizer of f, g.
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3.3.2 The Category Vect(K)

The equalizer of two K-linear maps f, g : A→ B in Vect(K) is the pair (E, e),
where

E = {a ∈ A | f(a) = g(a)}
and e : E → A is the inclusion K-linear map.

As in the category Set, we have f ◦ e = g ◦ e. Also, for every K-linear map
z : Z → A such that f ◦ z = g ◦ z, there is a unique function u : Z → E such
that e ◦ u = z. This equality is equivalent to e(u(x)) = z(x) for every x ∈ Z,
that is, u(x) = z(x) for every x ∈ Z.

Let us show that u is a K-linear map. Let k1, k2 ∈ K and x1, x2 ∈ Z. Then
we have

u (k1x1 + k2x2) = z (k1x1 + k2x2) = k1z (x1) + k2z (x2) = k1u (x1) + k2u (x2)

Hence u is a K-linear map.
In this category the equalizer of two K-linear maps is in fact a kernel of

some K-linear map, namely

E = {a ∈ A | (f − g)(a) = 0} = Ker(f − g)

On the other hand, the kernel of a K-linear map is the equalizer of some K-linear
maps, namely

Ker(f) = {a ∈ A | f(a) = 0}
is the equalizer of the K-linear map f : A → B and the zero K-linear map
0 : A→ B.

3.3.3 Monoid Categories
Let (M, ·) be a monoid. Recall that it may be viewed as a monoid category,
where the single object is M , the arrows are the elements of M and the compo-
sition is the multiplication of the elements of M . An equalizer of two elements
a, b ∈ M is an element x ∈ M with ax = bx and for every z ∈ M such that
az = bz there is u ∈ M such that xu = z. If (M, ·) is a non-trivial group, then
a, b ∈ M with a 6= b do not have an equalizer, because there is no x ∈ M such
that ax = bx.

Definition 3.5. We say that a category has equalizers if every arrows f, g :
A→ B have an equalizer.

Example 3.2. The categories Set and Vect(K) have equalizers, but monoid
categories may not have equalizers.

3.4 Coequalizer
Definition 3.6. Let C be a category and let f, g : A → B be arrows in C. A
coequalizer of f and g consists of a pair (Q, q), where Q is an object of C and
q : B → Q is an arrow in C such that q ◦ f = q ◦ g and it has the following
universal mapping property: given any object Z and any arrow z : B → Z in
C such that z ◦ f = z ◦ g, there is a unique arrow u : Q → Z in C such that
u ◦ q = z.
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A B Q

Z

f

g

q

z
u

The following two results are dual to the corresponding ones for equalizers.

Proposition 3.9. A coequalizer is uniquely determined up to an isomorphism.

Proposition 3.10. Any coequalizer is an epimorphism.

3.4.1 The Category Set
Let f : A→ B be function. Then the homogeneous relation ker(f) = (A,A,Ker(f))
with the graph

Ker(f) = {(x1, x2) ∈ A×A | f (x1) = f (x2)}

is called the kernel of f . Note that the kernel of f is an equivalence relation
on A.

The following theorem will be useful.

Theorem 3.11 (Factorization theorem by a surjection). Let f : A → B be a
function and let g : A→ C be a surjective function such that Ker(g) ⊆ Ker(f).
Then there is a unique function h : C → B such that f = h ◦ g.

Let f, g : A→ B be functions. We define a relation r = (B,B,R) by

(b1, b2) ∈ R⇐⇒ ∃a ∈ A : b1 = f(a) and b2 = g(a).

Let r = (B,B,R) be the smallest equivalence relation on B containing R. Then
we may consider the partition

B/R = {R〈b〉 | b ∈ B}

of B. Consider the function π : B → B/R defined by π(b) = R〈b〉. Note that
the kernel of the function π is

Ker(π) = {(b1, b2) ∈ B ×B | π (b1) = π (b2)}
=

{
(b1, b2) ∈ B ×B | R〈b1〉 = R〈b2〉

}
= R.

We show that (B/R, π) is a coequalizer of f and g.
For every a ∈ A, we have (f(a), g(a)) ∈ R, which implies that R〈f(a)〉 =

R〈g(a)〉. It follows that

(π ◦ f)(a) = R〈f(a)〉 = R〈g(a)〉 = (π ◦ g)(a),

hence π ◦ f = π ◦ g.
Now let z : B → Z be a function such that z ◦ f = z ◦ g. We show that

R ⊆ Ker(z) = {(b1, b2) ∈ B ×B | z (b1) = z (b2)}

(the kernel of the function z ). Let (b1, b2) ∈ R. Then there is a finite number of
elements c0, . . . , cn ∈ B such that b1 = c0, b2 = cn and for every i ∈ {1, . . . , n},
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we have either (ci−1, ci) ∈ R or (ci, ci−1) ∈ R. We may assume that (b1, b2) ∈ R,
because otherwise we may proceed inductively. Since (b1, b2) ∈ R, there is a ∈ A
such that b1 = f(a) and b2 = g(a). Then we have

z (b1) = z(f(a)) = z(g(a)) = z (b2) ,

hence (b1, b2) ∈ Ker(z). Thus, we have Ker(π) = R ⊆ Ker(z). Using the
factorization theorem of the function z by the surjective function π, there is a
unique function u : B/R→ Z such that u ◦ π = z.

3.4.2 The Category Ab

The following theorem will be useful.

Theorem 3.12 (Factorization Theorem by an Epimorphism). Let f : A → B
be a homomorphism of abelian groups, and let g : A → A′ be an epimorphism
of abelian groups with Ker(g) ⊆ Ker(f). Then there exists a unique homomor-
phism of abelian groups h : A′ → B such that f = h ◦ g, that is, the following
diagram is commutative:

A A′

B
f

g

h

Proof. Let a′ ∈ A′. Since g is an epimorphism, there exists a ∈ A such that
g(a) = a′. If there exists a0 ∈ A such that g (a0) = a′, then we have g(a) =
g (a0). It follows that g (a− a0) = 0, hence a − a0 ∈ Ker(g) ⊆ Ker(f). Then
f (a− a0) = 0, hence f(a) = f (a0).

It follows that we can define the function h : A′ → B by h (a′) = f(a), where
f(a) is uniquely determined as above. We have h(g(a)) = a for every a ∈ A.
Hence f = h ◦ g.

We show that h is a homomorphism of abelian groups. Let a′1, a′2 ∈ A′.
Then there exist a1, a2 ∈ A such that g (a1) = a′1 and g (a2) = a′2. Hence
h (a′1) = f (a1) and h (a′2) = f (a2). We have

g (a1 + a2) = g (a1) + g (a2) = a′1 + a′2.

It follows that

h (a′1 + a′2) = h (g (a1 + a2)) = f (a1 + a2) = f (a1) + f (a2) = h (a′1) + h (a′2)

Thus h is a homomorphism of abelian groups.
For uniqueness, suppose that there exists a homomorphism h′ : A′ → B such

that f = h′ ◦ g. It follows that h ◦ g = h′ ◦ g. Since g is an epimorphism, we
have h = h′.

Let (A,+) and (B,+) be abelian groups and let f, g : A → B be group
homomorphisms. Since I = Im(f − g) is a subgroup of B, we may consider the
factor group

Q = B/I = {b+ I | b ∈ B}
where the operation is defined by

(b1 + I) + (b2 + I) = (b1 + b2) + I, ∀b1, b2 ∈ B
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The factor group B/ Im(f − g) is also called a cokernel of the group homomor-
phism f − g, and we denote it by Coker(f − g).

Consider the group homomorphism q : B → Q = B/I defined by q(b) = b+I.
We have Ker(q) = {b ∈ B | q(b) = I} = {b ∈ B | b+ I = I} = I.

We show that (Q, q) is a coequalizer of f and g.
For every a ∈ A we have f(a) − g(a) = (f − g)(a) ∈ I, hence f(a) + I =

g(a) + I. Then for every a ∈ A we have

(q ◦ f)(a) = f(a) + I = g(a) + I = (q ◦ g)(a),

hence q ◦ f = q ◦ g.
Now let (Z,+) be an abelian group and let z : B → Z be a group homomor-

phism such that z ◦ f = z ◦ g. We show that I ⊆ Ker(z). To this end, let b ∈ I.
Then b = (f − g)(a) for some a ∈ A. It follows that

z(b) = z((f − g)(a)) = z(f(a)− g(a)) = z(f(a))− z(g(a)) = 0,

hence b ∈ Ker(z). Thus we have Ker(q) = I ⊆ Ker(z). Using the factorization
theorem for the group homomorphism z by the epimorphism q, there is a unique
group homomorphism u : B/I → Z such that u ◦ q = z.

In this category the coequalizer of two group homomorphisms is in fact the
cokernel of some group homomorphism, namely

Q = Coker(f − g)

On the other hand, the cokernel of a group homomorphism is the coequalizer
of some group homomorphism, namely

Coker(f) = B/ Im(f) = B/ Im(f − 0)

is the coequalizer of the group homomorphism f : A → B and the zero group
homomorphism 0 : A→ B.

3.4.3 Monoid Categories
Let (M, ·) be a monoid, which may be viewed as a monoid category. A co-
equalizer of two elements a, b ∈ M is an element x ∈ M with xa = xb and for
every z ∈ M such that za = zb there is u ∈ M such that ux = z. If (M, ·) is a
non-trivial group, then a, b ∈M with a 6= b do not have a coequalizer, because
there is no x ∈M such that xa = xb.

Definition 3.7. We say that a category has coequalizers if every arrows
f, g : A→ B have a coequalizer.

Example 3.3. The categories Set and Ab have coequalizers, while monoid
categories may not have coequalizers.
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