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Problem Sheet 1

Getting a Feel for Groups

1.1 Pre-requisites
I assume you are familiar with basic notions of sets, injections, bijections, and proof. Other than that, the only
facts you need are the following:
Definition 1.1 (What’s a group?). A group is a pair (G,m) where G is a set, and m is a map

m : G×G→ G.

We will usually write1

m(g, h) := g · h := gh.

The pair (G,m) must satisfy the following:
• (Identity) There exists an element 1 ∈ G such that 1 · g = g · 1 = g for all g ∈ G.

• (Inverses) For every element g ∈ G, there exists an element (possibly different, possibly the same) g−1

such that gg−1 = g−1g = 1, and

• (Associativity) g(hk) = (gh)k for all g, h, k ∈ G.
The map m is called the group multiplication, the multiplication, or the group operation, of the group.
Remark. Be warned that gh 6= hg in general. Note that we are already writing gh instead of g ·h, or of m(g, h).
Remark. We will often write a group simply as G, and not (G,m), although m is necessarily part of the
data. The notation G simply means that the group operation should be understood: For instance, Z is usually
understood to mean the set of integers together with usual addition of integers as the group operation.
Remark. The existence of inverses allows us to use the cancellation law. That is, if a, b, c are elements of a
group G, we have the implication

ab = ac ⇒ b = c.

This is because we can multiply both sides of the equation by a−1 and conclude a−1(ab) = (a−1a)b = 1b = b.
Notice that we are using every property of a group——the identity, inverses, and associativity——in proving
the cancellation law.
Definition 1.2 (Group Homomorphisms and Isomorphisms). Let G and H be groups. A group homomorphism
is a map of sets

ϕ : G→ H

such that
ϕ(gg′) = ϕ(g)ϕ(g′).

(i.e. ϕ represents multiplication.) An isomorphism of groups is a group homomorphism ϕ : G → H which is
also a bijection of sets.
Definition 1.3 (Subgroups). Let G be a group. A subset H ⊂ G is called a subgroup if

• H contains the identity of G,

• If h ∈ H, then h−1 ∈ G is also in H, and

• If h and h′ are in H, then so are hh′ and h′h.

1Depending on context, we may sometimes write g ·h, while we may other times write gh for brevity. This is the same convention
as in multiplying variables in standard high school algebra.

1



CHAPTER 1. GETTING A FEEL FOR GROUPS 2

Goals: The goal of these problems is to start becoming familiar with the kinds of manipulations we’ll wnat to
do computations with groups.

1.2 Some Basics
Exercise 1.1.

(1) Show that the empty set does not admit a group structure.

(2) Show that the identity element of a group G is unique. (That is, if two elements 1 and 1′ satisfy the
defining property of the identity element, then 1 = 1′.)

(3) Given an element g ∈ G, show that g−1 is unique. (That is, given elements h, h′ satisfying the defining
property of g−1, show that h = h′.)

(4) Let G and H be two groups such that each group contains only one element. Show that G and H are
isomorphic as groups. (That is, there is a unique group of cardinality 1.)

(5) Let G and H be two groups such that each group contains only two elements. Show that G and H are
isomorphic as groups.

(6) If you have the free time, let G and H be two groups such that each group contains only three elements.
Show that G and H are isomorpohic as groups. (This will become much easier to once we have Lagrange’s
Theorem.)

(7) Let ϕ : G → H be a group isomorphism between two groups. Since ϕ is a bijection, there is a unique
inverse map of sets ψ : H → G. Show that ψ must be a group homomorphism.

(8) Show g = g2 in a group G if and only if g = 1.

(9) If ϕ : G→ H is a group homomorphism, show that ϕ sends the identity of G to the identity of H.

(10) If ϕ : G→ H is a group homomorphism, show that ϕ(g−1) = ϕ(g)−1.

1.3 Orders of Group Elements
Exercise 1.2.

(1) Show that the non-zero complex numbers, written C×, form a group under multiplication.

(2) For any element g ∈ G, we will always write the expression g · g · · · · · g (with n appearances of g) as gn.
By convention, g0 is the identity of a group. Show that for all n ⩾ 0 is the identity of a group. Show that
for all n ⩾ 0, C× contains an element z for which zn = 1.

(3) Given an element g ∈ G of a group, the smallest, non-zero number n for which gn = 1 is called the order
of g. If gn never equals 1, we say g is an element of infinite order. Show that Z only has elements of order
1 or infinity.

1.4 The Set of Automorphisms is a Group
We mentioned in class that groups are a useful language for describing symmetries of an object. What do we
mean by a symmetry? A symmetry is an invertible operation from a mathematical object to itself, preseving
some structure. Here we explore examples of this idea.

(1) Fix a set S. Let Aut(S) be the set of all bijections S → S. Note there is a map Aut(S)×Aut(S) → Aut(S)
given by composing bijections. Show that this gives a group structure on Aut(S). (Using the above
philosophy, the mathematical object is a set S, and we view it as having no structure save the fact that
S is a set.)

(2) Now fix a group G. Let AutGroup(G) be the set of all group isomorphisms from G to itself. Show that
AutGroup(G) is itself a group. (Using the above philosophy, the mathematical object is G, and the structure
we’re preserving is its group structure——i.e., the identity and multiplication.)

(3) If you know what a topological space is, let X be a topological space, and Aut(X) the set of homeomor-
phisms from X to itself. Show that Aut(X) is a group.
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(4) Fix n ⩾ 1. Show that GLn(C)——the set of n×n complex, invertible matrices——form a group. Show the
same is true for GLn(R). (Using the philosophy above, this is the set of all operations on an n-dimensional
vector space that preserve the structure of linearity.)

(5) Fix n ⩾ 1. Show that SLn(C)——the set of n×n complex matrices with determinant 1——form a group.
Likewise for SLn(R). (Using the philosophy above, this is the set of all operations on an n-dimensional
vector space that preserve the structure of linearity and oriented volume.)

(6) For any n ⩾ 1, show that O(n)——the set of n × n real orthogonal matrices——form a group. (Using
the philosophy above, this is the set of all operations on an n-dimensional vector space that preserves the
structure of linearity and inner product.)

1.5 Extras
Exercise 1.3.

(1) Let H and K be subgroups of G. Show their intersection is a subgroup.

(2) Given a group G = (G,m), define the opposite group Gop = (G,w) by the operation

w(g, h) := m(h, g).

That is, Gop as a set is the same set as G, but its multiplication happens in the opposite order. Show
that Gop is a group.

(3) Show that the map G→ Gop given by g 7→ g−1 is a group isomorphism.

(4) Let ϕ : G → H be a group homomorphism. The kernel of ϕ, written kerϕ, is the set of all g for which
ϕ(g) = 1. Show that the kernel of any group homomorphism is a subgroup of G.

(5) The image of ϕ is the set of all h ∈ H such that h = ϕ(g) for some g ∈ G. Show that for any group
homomorphism ϕ : G→ H, the image of ϕ is a subgroup of H.

1.6 Linear Maps of Integers
Exercise 1.4. By the above exercise, the set Z2 := Z × Z is a group. (In fact, an abelian group.) Consider a
2× 2 integer matrix

A =

(
a b
c d

)
which defines a map Z2 → Z2 in the usual way that matrices do. Specifically, given an element (x, y) ∈ Z2, the
map sends

(x, y) 7→ (ax+ cy, bx+ dy).

(1) Show that the above map is always a group homomorphism from Z2 to Z2.

(2) Determine when A is an injective group homomorphism, using the determinant of A.

(3) Determine when A is a group isomorphism, using the determinant of A.

1.7 Some Fun Linear Algebra
Exercise 1.5. Let n be an odd, non-zero integer. Show that every element of O(n) has 1 as an eigenvalue.
(Hint: What happens when you apply AT to A− I?)



Problem Sheet 2

The Nature of Group Homomorphisms

2.1 Group Homomorphisms versus Maps of Sets
Exercise 2.1. Let ϕ3 : Z → Z be the map ϕ3(n) = 3n. So for instance, ϕ3(2) = 6. We think of the integers as
a group under addition.

(1) Show that ϕ3 is a group homomorphism.

(2) Show that there exists a map of sets ψ : Z → Z such that ψ ◦ ϕ3 = idZ.

(3) Show that no choice of such a ψ can be a group homomorphism.

(4) For any integer k, define a map of sets ϕk : Z → Z by ϕk(n) = kn. Show this defines a group homomor-
phism from Z to Z. Determine all k for which this map is an isomorphism.

2.2 The Sign Representation
Exercise 2.2.

(1) Let Sn be the symmetric group on n elements. (Automorphisms of a set of n elements.) For every element
σ ∈ Sn, let ϕ(σ) be the n × n matrix which sends the standard basis vector ei ∈ Rn to the vector eσ(i).
Show that the assignment ϕ : Sn → GLn(R) is a group homomorphism.

(2) List every element σ ∈ S3 and write out the matrix ϕ(σ) for each of them.

(3) Show that the determinant defines a group homomorphism det : GLn → R×, which sends A 7→ detA.
(You may use properties of determinants you learned form linear algebra class.) What is the special name
we usually give to the kernel of this map?

(4) Consider the composite group homomorphism Sn → GLn → R×. We call this the sign representation of
Sn. What is its image? (It is a subgroup of R×.)

2.3 Centers
Exercise 2.3.

(1) For any group G, the center of G is the set of those g such that g commutes with all elements of G. That
is, gh = hg for all h. Show that the center of G is a normal subgroup of G.

(2) What is the center of GLn(R) for n ⩾ 1?

2.4 Using Divisibility
Exercise 2.4.

(1) Let G be a group of order p for some prime p. Let x be a non-indentity element of G. Show that x must
have order p.

4
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(2) Let G be a group of order pn for some prime p and n ⩾ 1. Show that G must contain an element of order
p.

(3) Let G be a group (possibly infinite). Let H and H ′ be finite subgroups. Show that if gcd(|H|, |H ′|) = 1,
then H ∩H ′ = {1}.

2.5 Using Divisibility Again
Exercise 2.5.

(1) Let G be a finite abelian group. Show that the map x 7→ xn, for any integer n ⩾ 0, is a group homomor-
phism.

(2) Suppose further that gcd(|G|, n) = 1. Show that the map x 7→ xn is a group automorphism of G.

2.6 Free Groups
Exercise 2.6. What does a group with a set of generators, but with no relations look like? If the set of
generators is S, this group is called the free group with generating set S. You will prove its existence, and its
universal property, in this exercise.
Definition 2.1. Let S = {a, b, c, . . .} be a set. Though I have written a, b, c as though the elements may be
enumerable (i.e. countable), S need not be countable. For n ⩾ 0, a word of length n in S is defined to be a
map of sets {1, . . . , n} → S. The empty word is the map from the empty set to S, and is the unique word of
length 0.

So a word of length n is simply an ordered string of n elements of S, prossibly with repetitions.
Example 2.1. If S = {a, b, c}, then here are the words of lengths 0 to 2:

∅ (the empty word)

a, b, c

aa, bb, cc, ab, ba, bc, cb, ca, ac.

Here are some examples of words of length 5:

aaaba, ababa, acccb.

Given a set S, let S be the set given by adjoining a new element for every s ∈ S. we will write this new
element as “s−1” and call it the inverse of s. So for example, if S = {a, b, c, . . .}, then

S = {a, a−1, b, b−1, c, c−1, . . .}.

Definition 2.2. A word in S is called reduced if a letter in the word never appears next to its inverse.
Remark. As an example, here are some unreduced words, with unreduced bits underlined.

abbaaa−1bcbcc−1b, aa−1, ab−1bb−1c, ab−1bb−1c.

Given an unreduced word, we can make it reduced by simply removing two adjacent letters when one is the
inverse of the other. For example, here are the reductions of the above words:

abbabcbb, ∅, ab−1c, ab−1c.

Note that to fully reduce a word, one may require a few steps:

ab−1cc−1ba−1 → ab−1ba−1 → aa−1 → ∅.

Regardless, since every word is by definition of finite length, this reduction process terminates. Given any word
in S, there is a unique reduction of that word, in which no letter appears next to its inverse.

Given two words w1 and w2, we may simply concatenate them (i.e., put them side by side) to create a new
word. For instance, if

w1 = abc, w2 = c−1baa

then we have
w1w2 = abcc−1baa, w2w1 = c−1baaabc.

(I’ve been told this is a common way to create new words in German.) Note that even if two words are reduced,
their concatenation may not be. Also note that w1w2 need not equal w2w1.
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Definition 2.3. Let S be a set. The free group on S is the set of reduced words of length n ⩾ 0 in S. The
group multiplication is given by concatenating two words, then reducing the concatenation.

(1) Show that any word in S admits a unique reduction.

(2) Show that the above operation is associative.

(3) Show that the free group is in fact a group.

(4) Let G be a group, and let j : S → G be a map of sets. Show that this extends to a group homomorphism
F (S) → G.

(5) Show there is a bijection of sets

{Group homomorphisms F (S) → G} ∼= {Set maps S → G}.



Problem Sheet 3

Subgroups and Basic Group Construc-
tions

3.1 Cosets of S3 with respect to S2

Exercise 3.1. Let S3 be the symmetric group on 3 elements. Recall that this is the set of all bijections from
3 to itself, where 3 = {1, 2, 3}. Let H ⊂ S3 be the set of all bijections τ : 3 → 3 such that τ(3) = 3——i.e., the
subset of all bijections that fix 3.

(1) Show H is a subgroup of S3.

(2) So H acts on G = S3. How many elements are there in the orbit space?

(3) Finally, write out each orbit explicitly. This means you must write out which elements of S3 are in each
orbit.

(4) For any n ⩾ 1, let H ⊂ Sn be the subgroup of all elements that fix n. Exhibit an isomorphism from H to
Sn−1.

(5) How many orbits are there of the action of H on Sn?

3.2 Cyclic Groups
Exercise 3.2. A group G is called cyclic if there exists g ∈ G for which 〈g〉 = G.

(1) Show that if two cyclic groups have the same order (finite or otherwise) then they must be isomorphic.

(2) Show that S2 is cyclic.

(3) Show that Z is cyclic.

(4) Use Lagrange’s theorem to show that any group of prime order must be cyclic. [Hint: Last homework.]

(5) Prove that for any integer n ⩾ 1, there exists a cyclic group of order n. For instance, as a subgroup of
Sn, or of GL2(R), or of C×.

3.3 Abelian Groups
Exercise 3.3. A group G is called abelian if for all g1, g2 ∈ G, we have g1g2 = g2g1.

(1) Show that Sn is not abelian for any n ⩾ 3.

(2) Show that any cyclic group is abelian. Conclude that Sn is not cyclic for any n ⩾ 3.

(3) Show that the center of an abelian group is the whole group.

7
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3.4 Product Groups
Exercise 3.4. Let G and H be groups. Define a map

m : (G×H)× (G×H) → G×H,

m((g, h), (g′, h′)) = (gg′, hh′).

Note that throughout this problem, 1 may refer to either the group unit of G, or the group unit of H.

(1) Show that m defines a group structure on G×H.

(2) Show that (g, 1) · (1, h) = (1, h) · (g, 1).

(3) Recall that a group A is called abelian if for all a, a′ ∈ A, we have aa′ = a′a. Show that if G and H are
abelian, then G×H is abelian (with the above group structure).

(4) Show that Z2 = Z× Z is a subgroup of R2 = R× R.

(5) Show that the maps
G→ G×H,

g 7→ (g, 1)

and
G×H → G,

(g, h) 7→ g

are group homormophisms.



Problem Sheet 4

Conjugation in Group Theory

4.1 Subgroups of Z
Exercise 4.1. In this problem, you will show that every subgroup of Z is of the form nZ for some n ⩾ 0.

Let H ⊂ Z be a subgroup which contains some non-zero element. Let n ∈ H be the least, positive integer
inside H. Show that H = nZ. [Hint: Remainders.]

4.2 Conjugation Actions
Exercise 4.2. The conjugation action of a group on itself is by far the most important group action in
representation theory. A full understanding of the conjugation action can be illusive, and in many contexts,
proves quite essential for research.

(1) Fix an element g ∈ G. Define a map Cg : G→ G by h 7→ ghg−1. Show that Cg is a group isomorphism.

(2) Show that Cg ◦ Cg′ = Cgg′ . In other words, the assignment g 7→ Cg defines a group homomorphism
G→ AutGroup(G). So this defines another group action of G on itself. It is quite different from the action
we have considered earlier, where all we had was a group homomorphism G→ AutSet(G). This new map,
G→ AutGroup(G), is called the conjugation action of G on itself.

(3) If G is abelian, show that Cg is trivial for all g ∈ G.

4.3 Group Isomorphisms in General
Exercise 4.3. Since Cg is a group isomorphism from G to itself, it tells us a lot about the subgroups and
elements of G. This is because of some general properties of group isomorphisms, which we now explore. Let
ϕ : G→ H be a group isomorphism. If K ⊂ G is a subset, we define

ϕ(K) = {h ∈ H such that h = ϕ(g) for some g ∈ K}.

(1) Show that isomorphisms preserve orders of elements. That is, show that if g is an element of order n,
then ϕ(g) is.

(2) Show that if K ⊂ G is a subgroup, it is isomorphic to ϕ(K).

(3) Show that isomorphisms preserve normal subgroups. That is, show that if K ⊂ G is a normal subgroup,
then ϕ(K) ⊂ H is normal.

(4) Let K be a normal subgroup G. Show that there is a group isomorphism G/K ∼= H/ϕ(K).

Throughout the following exercises, if you have time, think about what the above results imply about elements
and subgroups of G that are conjugate.

4.4 Conjugacy Classes of Elements
Exercise 4.4.

9
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(1) Two elements g, g′ ∈ G are called conjugate if there exists some h ∈ G such that

h−1gh = g′.

Show by example that if g and g′ are conjugate, the choice of h need not be unique.

(2) Show that being conjugate defines an equivalence relation on the set G. That is, show that the relation
“g ∼ g′ if g is conjugate to g′” is an equivalence relation. Under this relation, the equivalence class of g
is called the conjugacy class of g.

(3) Show that g is the only element in its conjugacy class if and only if g is in the center of G.

4.5 Conjugacy classes of Subgroups
Exercise 4.5. Let H and H ′ be subgroups of G. We say H and H ′ are conjugate if there is some g such that

Cg(H) = H ′.

That is, if gHg′ = {ghg−1, h ∈ H} = H ′ for some g.

(1) Show that being conjugate defines an equivalence relation on the set of all subgroups of G. That is, show
that the relation “H ∼ H ′ if H is conjugate to H ′” is an equivalence relation. The equivalence class of H
under this relation is called the conjugacy class of H.

(2) Show that H is the only element in its conjugacy class if and only if H is normal.



Problem Sheet 5

Properties of Groups and Conjugation

5.1 Orders Revisited
Exercise 5.1. Recall that you proved any subgroup of Z is of the form nZ.

(1) Let g ∈ G be an element of finite order n. Show that gn = 1G. [Hint: any element of G defines a group
homomorphism from Z.]

(2) If g is of finite order, show that the order of g is also the smallest number k for which gk = 1G. [You can
use the same trick as above.]

(3) Let G be a finite group. Show that for any g ∈ G, g|G| = 1G.

5.2 The Opposite Group
Exercise 5.2.

(1) Given a group G = (G,m), define the opposite group Gop = (G,w) by the operation

w(g, h) := m(h, g).

That is, Gop as a set is the same set as G, but its multiplication happens in the opposite order. Show
that Gop is a group.

(2) Show that the map G→ Gop given by g 7→ g−1 is a group isomorphism.

5.3 Conjugation Preserves Everything
Exercise 5.3. Prove the following. Use the results form Exercise 4.2(1) and Exercise 4.3. You will have points
taken off for proofs longer than 3 sentences.

(1) If g and g′ are conjugate in G, they have the same order.

(2) If H and H ′ are conjugate subgroups in G, they have the same order.

(3) If H and H ′ are conjugate subgroups in G, they are isomorphic groups.

5.4 The Klein 4 Group, a Cappella
Exercise 5.4. Recall from class that Z/2Z is a cyclic group of order 2. Let G = Z/2Z × Z/2Z. (This is also
written Z/2Z ⊕ Z/2Z sometimes.) This has the “product” group structure you studied in the last homework.
This example is called the Klein four group.

(1) How many elements are in G?

(2) Show that G is not cyclic.

(3) Explain why G is not isomorphic to Z/4Z.

11
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(4) Find a subgroup of S4 isomorphic to G. Write down the isomorphism explicitly. (Whenever you have to
refer to an element of S4, use cycle notation.)

(5) Now go Google “Klein Four Group, Finite Simple Group (of Order Two).” How many math terms do you
recognize?

5.5 Index 2 Subgroups are Normal
Exercise 5.5.

(1) Let G be a group. Show that any index 2 subgroup of G is a normal subgroup. (We will later see that a
group may have order divisible by 2, but still not have an index 2 subgroup.)

(2) More generally, suppose p is the smallest prime dividing |G|. If H ⊂ G is a subgroup of index p, show
it must be normal. [Hint: Examine the action of G on G/H. This problem will involve a few non-trivial
steps.]

5.6 Orbits and Conjugation
Exercise 5.6.

(1) Let G act on a set X. Note that this defines an action of any subgroup H on X. Show that if H and
H ′ are conjugate, then there exists a bijection ϕ between the set of orbits of the H-action, and the set of
orbits of the H ′-action.

(2) Using the bijection ϕ you construct, if two orbits are related by O′ = ϕ(O), show that there is a bijection
from the orbit O to the orbit O′.



Problem Sheet 6

Matrix Groups and Their Properties

6.1 Another Split Short Exact Sequence
Exercise 6.1. Let {±1} ⊂ R× be the subgroup consisting of 1 and −1.

(1) Prove that
1 → SOn(R) → On(R) → {±1} → 1

is a short exact sequence. Here, SOn(R) → On(R) is the inclusion.

(2) Exhibit a splitting of the above short exact sequence.

6.2 SO2(R) is the Circle
Exercise 6.2. Recall (or convince yourself) that SO2(R) consists of matrices(

a −b
b a

)
where a2 + b2 = 1.

(1) Show that SO2(R) is isomorphic to the group S1. Here, S1 ⊂ C× is the subgroup of all complex numbers
z such that |z2| = 1.

(2) Prove that SO2(R) is abelian.

6.3 The Dihedral Groups
Exercise 6.3. Recall from class that for any abelian group L, the inversion σ : l 7→ l−1 defines a homomorphism

ϕ : Z/2Z → Aut(L), [0] 7→ idL, [1] 7→ σ.

In particular, for L = Z/nZ with n ⩾ 2, this defines a group

D2n := Z/nZ ⋊ϕ Z/2Z.

Now let 〈x, y〉 ⊂ O2(R) be the subgroup generated by the matrix x representing rotation by 2π/n radians, and
the matrix y representing reflection about the x-axis1.

Prove that 〈x, y〉 is isomorphic to D2n.

1The subgroup generated by means the subgroup obtained by taking all elements that are finite products of x, x−1, y, y−1, in
any order.
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Orthogonal Groups and Rotations

7.1 Rotational Symmetries of the Cube
Exercise 7.1.

(1) Using the orbit-stabilizer theorem, compute the number of elements in the group of rotations of R3 that
send a perfect cube (centered at the origin) to itself. You might consider looking at faces, and not vertices.

(2) What if, instead of the cube, you consider a regular octahedron (also centered at the origin)? You should
note that the regular octahedron can be drawn inside a cube, with each vertex of the octahedron at the
center of a face of the cube.

7.2 Inner Product on Rn

Recall that the dot product sends a pair x⃗, y⃗ ∈ Rn to the real number

x⃗ · y⃗ := x1y1 + · · ·+ xnyn.

Equivalently, if one thinks of x⃗ and y⃗ as column vectors——i.e., as n× 1 matrices——we have

x⃗ · y⃗ = xTy.

We say x⃗ and y⃗ are orthogonal if x⃗ · y⃗ = 0. We also note that

x⃗ · y⃗ = y⃗ · x⃗ and (tx⃗+ x⃗′) · y⃗ = tx⃗ · y⃗ + x⃗′ · y⃗.

Show that the following are equivalent for an n× n matrix A:

(1) ATA = I. (i.e., A ∈ On(R).)

(2) A preserves the dot product. That is, Ax⃗ · Ay⃗ = x⃗ · y⃗ for every x⃗, y⃗ ∈ Rn. [Hint: Use that the inner
product is a multiplication of a column vector and a row vector.]

(3) The columns of A are mutually orthogonal vectors of unit norm. [Hint: Every entry resulting from a
matrix multiplication is a dot product of a row with a column.]

7.3 Rotations
Exercise 7.2.

(1) Let n be odd. Prove that any matrix A ∈ SOn(R) has at least one eigenvector with eigenvalue 1. [Hint:
Show that det(A− I) = det(I −A) by using the fact that AT(A− I) = (I −A)T.]

(2) Show that any A ∈ SO3(R) fixes a non-zero vector v, and A is rotation about this vector. [Hint: A is
orthogonal, so it preserves dot products. What can you say about A’s effect on the plane orthogonal to
v?]

14
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(3) By a rotation in R3, we mean the linear map which rotates R3 about some line through the origin. Show
that the composition of two rotations is again a rotation (even if their axes of rotation do not agree!).
Don’t try to do this by computational brute froce.
So SO3(R) is the group of rotations in R3. (Likewise, you saw last week that SO2(R) is the group of
rotations in R2, by seeing that SO2(R is isomorphic to the circle.) This is a very special situation; in no
other dimension does it hold that an element of SO2(R) is automatically a rotation about some axis.

(4) Show by example that SO4(R) has an element which does not fix any vector.

7.4 Automorphisms of a Cyclic Group
Exercise 7.3. Let Cn be a finite cyclic group of order n. (So, for instance, it is isomorphic to Z/nZ.) Let ϕ(n)
be the number of 1 ⩽ k ⩽ n for which gcd(k, n) = 1. ϕ is called Euler’s totient function.

(1) Show that |Aut(Cn)| = ϕ(n). [Hint: Show that an automorphism must send a generator to a generator.
Then what?]

(2) Show that there are only two isomorphisms types of groups that can be obtained as a semidirect product
Z/6Z ⋊ Z/2Z. What are they? [Hint: What are the possible maps from Z/2Z to Aut(Z/6Z)?]



Problem Sheet 8

Structure and Classification of Finite Groups

8.1 Orders and Homomorphisms
Exercise 8.1.

(1) Let g ∈ G be an element of order n. Let ϕ : G → H be a homomorphism. Show that ϕ(g) must be an
element whose order divides n.

(2) Let G and H be finite groups. If gcd(|G|, |H|) = 1, show that the only homomorphisms from G to H are
trivial.

(3) Show that if gcd(n,m) = 1, then Z/nZ × Z/mZ ∼= Z/(mn)Z. [Hint: what is the order of ([1], [1]) ∈
Z/nZ× Z/mZ?]

8.2 Build-up to the Third Isomorphism Theorem
Exercise 8.2. The third isomorphism theorem answers the following question: Let’s say I have a nested
sequence of subgroups, A ⊂ B ⊂ G. Well, I could quotient out all of B to get the orbit set G/B. (In the
process, all of A is divided out, too, since A is contained in B.) Or I could try to quotient out step by step:
First take G/A, and then divide out by what remains of B. Is the end result the same thing? The answer is
yes, and if both A and B are normal in G (so that it makes to talk about quotient groups), the end result is
the same thing as groups. We’ll prove this eventually. Here, you’ll establish the essential pieces for proving the
third isomorphism theorem.

(1) Suppose we have subgroups A ⊂ B ⊂ G. Exhibit an injection

f : B/A→ G/A.

[Neither of these are groups, these are just sets. After all, we haven’t assumed that A is normal in G.]

(2) Let A ⊂ B ⊂ G be subgroups. Suppose that A is normal in G. Prove that A ◁ B as well. [Now it makes
sense to talk about the groups G/A and B/A.]

(3) Prove that your injection f from above is a group homomorphism. This exhibits B/A as a subgroup of
G/A.

(4) Exhibit a bijection
ψ : G/B → (G/A)/(B/A).

[This just a function between two sets. To be clear, on the righthand side, we have made use of the action
of B/A on G/A, since B/A is a subgroup. The quotient set (G/A)/(B/A) is the usual orbit space of this
action.]

(5) If G is finite, prove that
|G/B| = |G/A|/|G/B|.
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8.3 Some Sylow-style Fun
Exercise 8.3.

(1) Let G = S3. List all the elements of Syl3(G) and Syl2(G). There should be one element in the former,
and three elements in the latter.

(2) In class, we showed that if |G| = pq with q > p primes, then G must be a semidirect product

G ∼= Z/qZ ⋊ Z/pZ.

Assume that p does not divide q − 1. By considering the size of Aut(Z/qZ), and by considering Exercise
8.1(2), show that G must be isomorphic to a direct product. Conclude using 8.1(3) that G must be a
cyclic group.

(3) We prove the same result a different way. Assume you don’t know (and could never know) the size of
Aut(Z/qZ). Using the third Sylow theorem, and assuming that p does not divide q−1, prove that G must
be a direct product Z/pZ× Z/qZ. [Hint: How did we do this in class for pq = 15?]

(4) Show that any group of the following orders are cyclic:

65, 221, 9797.

8.4 Some Fun with Semidirect Products
Exercise 8.4.

(1) Show that there are exactly two homomorphisms from Z/2Z to itself.

(2) Show that there are exactly two homomorphisms from Z/2Z to Aut(Z/3Z). [Hint: You know how big
Aut(Z/3Z) is, based on the last problem sheet. So what group must it be?]

(3) Recall that a semidirect product L⋊ϕ R is determined by a homomorphism R→ Aut(L). Show that if ϕ
is the dumb homomorphism (sending everything to the identity), Z/3Z ⋊ϕ Z/2Z ∼= Z/6Z.

(4) If ϕ is the other homomorphism from Z/2Z to Z/3Z, show that Z/3Z ⋊ϕ Z/2Z ∼= S3.

(5) In contrast, show that Z/2Z ⋊ Z/3Z must always equal Z/6Z. [The order of the semidirect product is
reversed!] As a hint, you might again try to count how many elements are in Aut(L) for L = Z/2Z.
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Quotients, Rings, and Modules

9.1 The Third Isomorphism Theorem for Groups
Exercise 9.1. In this problem, G need not be finite. Suppose A ⊂ B ⊂ G are subgroups, and that A,B ◁ G.
Building on problem sheet 8, exhibit an isomorphism

ψ : G/B → (G/A)/(B/A).

You have proven the third isomorphism theorem. [And in case you’re keeping count, don’t worry——you haven’t
missed the second isomorphism theorem. We just haven’t talked about it yet.]

9.2 Maps of Quotients
Exercise 9.2. Let A1, A2 and B1, B2 be abelian groups. Suppose we are given homomorphisms

A1 A2

B1 B2

i

f g

j

so that the above diagram commutes. This means that gi = jf as group homomorphisms.

(1) Prove that the map sending [a] to [g(a)] is a well-defined group homomorphism from the quotient group
A2/i(A1) to the quotient group B2/j(B1).

(2) Prove, without using any formulas involving group elements the existence and uniqueness of such a map.
[Hint: Universal properties. You may use formulas involving equalities of functions, but don’t ever write
down elements of groups! It may help to give names to the homomorphisms A2 → A2/i(A1) and B2 →
B2/j(B1).]

9.3 Polynomial Rings and Power Series Rings
Exercise 9.3. Let R be a commutative ring. Let R[[x]] be the set of power series with coefficients in R.
Explicitly, an element of R[[x]] is a power series

p(x) = a0 + a1x+ a2x
2 + · · ·

We may write this as

p(x) =

∞∑
i=0

aix
i.

[As you’re getting used to things, it may be useful for you to think of an element of R[x] as equivalent information
to an ordered sequence

(a0, a1, . . .) ∈ R×R× · · ·

where each ai ∈ R.]
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If p and q are two power series with coefficients ai and bi, respectively, we define p+ q to be the power series
whose ith coefficient is ai + bi. That is,

(p+ q)(x) =
∑
i⩾0

(ai + bi)x
i.

We define the product power series to have kth coefficient given by∑
i+j=k

aibj .

That is,

(pq)(x) =
∑
k⩾0

 ∑
i+j=k

aibj

xk.

Remark. As an explicit reminder, two power series
∑
aix

i and
∑
bix

i are equal if and only if ai = bi for all i.

Remark. Also as a warning, note that there is no notion of convergence going on here. For instance, if the ring
R is Z/nZ, there is no obvious way of talking about convergence of a power series. This is why——if you want
to divorce the notion of power series in calculus from the formal algebraic manipulations we’ll do here——it
may help to now and then think of a power series simply as a sequence of elements of R.

(1) Prove that R[[x]] is a commutative ring under the addition and product operations above.
Let R[x] ⊂ R[[x]] be the subset of power series for which there exists some n ∈ Z⩾0 such that i > n ⇒
ai = 0. That is, R[x] is the set of polynomials with coefficients in R.

(2) Show that the sum of two elements of R[x] is again in R[x], and likewise with products.

(3) Show that both the additive and multiplicative units of R[[x]] are in R[x].

(4) Explain why you’ve shown that R[x] is a ring.
If p(x) is not the zero polynomial, we call the largest i for which ai 6= 0 the degree of the polynomial. If
p(x) is the zero polynomial, we will informally say that its degree is −∞.

(5) Prove that deg(fg) = deg f + deg g, with the obvious convention for what it means to add −∞ to a
number.

9.4 Modules as an Abelian Group with a Ring Action
Exercise 9.4. Let M be an abelian group. An endomorphism of M is a group homomorphism from M to
itself. Let End(M) denote the set of endomorphisms from M to itself. There are two operations

+ : End(M)× End(M) → End(M) and ◦ : End(M)× End(M) → End(M)

The first is defined as follows: given two endomorphisms f and g, we obtain a third endomorphism f + g by
declaring

(f + g)(x) := f(x) + g(x)

for all x ∈M . The second, ◦, is the usual composition of functions.

(1) Show that End(M) is an abelian group under the operation of adding functions. That is,

(2) Let ◦ denote the composition of functions. Show that (End(M),+, ◦) is a ring.

(3) Show that an R-module structure on M is the same thing as a ring homomorphism

R→ End(M).

Phiosophically, this is the same thing as saying that a group action on a set is the same thing as a group
homomorphism

G→ Aut(X).

There, Aut(X) consists of maps respects the property of cardinality of X. For modules, End(M) consists
of maps respecting the structure of additivity of X.
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Rings, Fields, and Modules

10.1 Fields are Very Simple
Exercise 10.1. Show that a commutative ring R is a field if and only if it only has two ideals: {0} and R itself.

Remark. In other words, there are no meaningful quotient rings you can make out of fields——there simply
aren’t any interesting ideals to quotient by. So in terms of being indecomposable, this means fields are like
simple groups. When one tries to use the algebra of commutative rings to study spaces, this is the reason that
fields will often play the role of “points”——they are spaces that cannot be decomposed any further.

10.2 Maximal Ideals and Fields
Exercise 10.2. An ideal I ⊂ R of a commutative ring is called maximal if the only ideal containing I is R or
I itself.

(1) If I is a maximal ideal, prove that R/I is a field.

(2) Prove the converse. You may want to prove a lemma that ideals in R containing I are in bijection with
ideals in R/I.

(3) Prove that nZ ⊂ Z is maximal if and only if n is a prime. [Hint: Any ideal must in particular be a
subgroup of Z, and you know what all subgroups of Z look like.] You have shown that Z/nZ is a field if
and only if n is a prime.

(4) In Z/7Z, verify that Z/7Z − {0} is a group by writing out its multiplication table. How does your table
show that it’s a group?

10.3 Field of Order 4
Exercise 10.3. From above, we learned that there is a field of order p for any prime number p. It turns out
there is a field of order pk for any prime p and any positive integer k ⩾ 1. We probably won’t be able to prove
it, except now, when pk = 4.

(1) Exhibit a field F4 of order 4. Trial and error may be inevitable. As a hint, F4 is not isomorphic to Z/4Z
as an abelian group.

(2) Let F8 be a field of 8 elements. [Assume it exists.] Why is (F8 − {0},×) cyclic?

10.4 Direct Sum Modules and Quotient Modules
Exercise 10.4. Fix a ring R. We’ll set up the idea of quotient modules and product modules, the same way
we did for groups.

(1) Show that the functions

M →M ⊕N, m 7→ (m, 0) and M ⊕N →M, (m,n) 7→ m

are both left R-module homomorphisms.

20
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(2) Let f : M → N be a homomorphism of left R-modules. Let the kernel and image of f be the kernel and
image of f as a group homomorphism. Show both ker(f) ⊂M and im(f) ⊂ N are submodules.

(3) Let M ′ ⊂M be a submodule, and let M/M ′ be the quotient abelian group. Show that the action

R×M/M ′ →M/M ′, rx := rx

makes M/M ′ into a left R-module.

(4) Let M and N be left R-modules. Show that HomR(M,N) is an R-module under the addition where if
f, g ∈ HomR(M,N), then f + g is defined via

(f + g)(x) = f(x) + g(x)

and for r ∈ R, the function rf is defined via

(rf)(x) = r(f(x)).

Here, x is any element of M .

10.5 The Hamiltonians/Quaternions
Exercise 10.5. We all know R4 is a vector space. Using an identification R4 ∼= R×R3, let us write an element
of R4 as

(t, v⃗) ∈ R× R3.

For historical reasons, we will write H instead of R4 in what follows.
Define a function

H×H → H

by the formula
(s, u⃗)(t, v⃗) := (st− u⃗ · v⃗, sv⃗ + tu⃗+ u⃗× v⃗).

Here, · is the dot product for R3 and × is the cross product for R3.
In the following proofs, I strongly encourage you to never write out the components of u⃗ ∈ R3.

(1) Prove that the multiplication above is associative. Verifying assoviativity requires a lot of terms, so be
organized!

(2) Prove that multiplication distributes over addition of vectors.

(3) Prove that 1 := (1, (0, 0, 0)) is the multiplicative unit.

(4) Prove by example that multiplication is not commutative.

(5) Let
i := (0, (1, 0, 0)), j := (0, (0, 1, 0)), k := (0, (0, 0, 1)).

Prove that these all square to the element

−1 := (−1, (0, 0, 0)) ∈ H.

(6) Given an element x = (t, v⃗), let |x|2 equal the usual norm-squared of a vector, so

|x|2 = t2 + |v|2.

Show that |xy| = |x||y|. In other words, multiplication preserves the norm.

(7) Given an element x = (t, v⃗), let x denote the element (t,−v⃗). Show that any non-zero element x has a
multiplicative inverse given by x/|x|2.

Remark. This ring is often called the Hamiltonians, or the Quaternions. As you proved above, it has the
property that H − {0} is a group, but this ring is not a field. This is because the multiplication is not
commutative. Such rings are called skew fields. When one does not demand that R − {0} is a group, but that
every non-zero element has an inverse, R is called a division rings.
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Remark. You might ask, how many division rings are there? It turns out that every finite division ring must
be a field. This is called Wedderburn’s little theorem.

And how many division rings are there that contain the field R inside of them? Not many——it turns out
that there are only four division rings that are vector spaces over R:

(1) The ring with a single element, which is the zero ring.

(2) The ring R,

(3) The ring C, and

(4) The ring H.
This is called the Frobenius theorem.

10.6 R[t]/(t2 + 1) ∼= C
Exercise 10.6. As usual, in what follows, a represents the equivalence class of a ∈ R in the quotient ring R/I.

(1) Show that R[t]/(t2 + 1) is a vector space over R with basis given by 1 and t.

(2) Show that C is a vector space over R with basis given by 1 and i.

(3) Show that there is an R-linear map f : R[t]/(t2 + 1) → C sending 1 7→ 1 and t 7→ i. Why must this be a
bijection?

(4) Show that f is a ring isomorphism.

(5) Conclude that R[t]/(t2 + 1) must be a field.

10.7 Linear Algebra, Applied
Exercise 10.7. Let Vd be the set of polynomials in t of degree ⩽ d with R coefficients. Fix d+1 real numbers
a0, a1, . . ., ad. Consider the function

eva0,a1,...,ad
: Vd → Rd+1

which sends a polynomial p to the column vector 
p(a0)
p(a1)

...
p(ad)


(1) Show that eva0,a1,...,ad

is an R-linear map for any choice of real numbers a0, a1, . . ., ad.

(2) If each ai is distinct, show that the linear map is an injection.

(3) What is the dimension of Vd?

(4) Prove that for any collection of distinct real numbers

(a0, a1, . . . , ad)

and any collection of real numbers
(z0, . . . , zd)

there exists a unique polynomial p such that

p(ai) = zi.

(5) Fix a field F . Prove that for any collection of distinct elements

(a0, a1, . . . , ad), ai ∈ F

and any collection of elements
(z0, . . . , zd), zi ∈ F

there exists a unique degree d polynomial p with coefficients in F such that

p(ai) = zi.
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Midterm Exam

11.1 Definitions
Exercise 11.1. Know the definitions of the following.

(1) Group

(2) Subgroup

(3) Order of an element

(4) Order of a group

(5) Group homomorphism

(6) Group isomorphism

(7) Kernel

(8) Image

(9) Normal subgroup

(10) Conjugation by h

(11) Conjugacy class of an element of a group

(12) AutSet(X)

(13) Group action on a set X

(14) Orbit

(15) Orbit space

(16) Index of a subgroup

(17) Stabilizer

(18) Center of a group

(19) Abelian group

(20) When H is normal, the group operation on G/H.

(21) Z/nZ

(22) Sn

(23) An

(24) Simple group

23
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11.2 Normal Subgroup
Exercise 11.2. Prove that the kernel of any group homomorphism is a normal subgroup.

11.3 Cyclic Groups
Exercise 11.3. Show that if two cyclic groups have the same order (finite or not), they must be isomorphic.

11.4 Symmetric Groups and Cycle Notation
Exercise 11.4.

(1) Exhibit an explicit element τ showing that (123)(45) and (253)(16) are conjugate in S6.

(2) Show that Sn has at least n distinct subgroups of order (n− 1)!.

(3) Write down every subgroup of S3 explicitly. That is, what are the subsets of S3 that are subgroups?
When you write elements of S3, use cycle notation.

11.5 Free Groups
Exercise 11.5.

(1) If S is a finite set, show that the free group on S is finitely generated.

(2) Prove that any finite group is finitely generated.

11.6 Simple Groups
Exercise 11.6.

(1) Show that Z is not simple.

(2) Show that S3 is not simple.

(3) Show that Z/12Z is not simple.

(4) Show that A4 is not simple.

11.7 Index
Exercise 11.7.

(1) Let H be the subgroup of S5 generated by (13)(245). Write down every element of H.

(2) Compute the index of H inside S5.

11.8 Theorem Statement
Exercise 11.8.

(1) State the first isomorphism theorem.

(2) State Lagrange’s theorem.

11.9 The Subgroup of a Simple Group Need Not be simple
Exercise 11.9. Show by example that a subgroup of a simple group need not be simple. (You may assume
that A5 is simple.)



CHAPTER 11. MIDTERM EXAM 25

11.10 Group of Unit Quaternions
Exercise 11.10. Recall that the Hamiltonians, or the quaternions, is the name for R4 equipped with the
following operation: If (s, u⃗) and (t, v⃗) ∈ R× R3 ∼= R4 are elements, we define

(s, u⃗) · (t, v⃗) := (ts− u⃗ · v⃗, tu⃗+ sv⃗ + u⃗× v⃗).

Here, u⃗ · v⃗ indicates the dot product of u⃗ with v⃗. In the last coordinate, u⃗× v⃗ is the cross product in R3.
Let S3 denote those elements (s, u⃗) ∈ R4 for which s2 + |u⃗|2 = 1. Show that S3 is a group under the above

multiplication. Show that S3 is not an abelian group.

11.11 Short Exact Sequences
Exercise 11.11. Show that following sequences do not split:

(1) Z ×n−−→ Z → Z/nZ for n 6= 0,±1.

(2) Z/2Z ϕ−→ Z/4Z → Z/2Z where ϕ([0]) = [0] and ϕ([1]) = [2].

11.12 Chinese Remainder Theorem
Exercise 11.12. If n and m are relatively prime (meaning they share no common divisors aside from 1), show
that Z/nZ× Z/mZ ∼= Z/(nm)Z.

11.13 Irreducibility
Exercise 11.13. Let F be a field. For any x ∈ F , note that there is a function

F [t] → F,

called evaluation at x. Explicitly, if f = adt
d + · · ·+ a1t+ a0 is a polynomial, we send f to

f(x) = adx
d + · · ·+ a1x+ a0 ∈ F.

Here, by xd, we mean of course the element of F obtained by multiplying x with itself d times.
(1) Show that for any x ∈ F , evaluation at x is a ring homomorphism.

(2) Show that f can be factored by a linear polynomial if and only if there is some x ∈ F for which f(x) = 0.
[Hint: Use the division algorithm and induct on degree.]
Recall that a polynomial f(t) ∈ F [t] is irreducible if the only polynomials dividing f(t) are degree 0 (i.e.,
are constants) or have degree equal to f .

(3) If F = C, show that f(t) = t2 + 1 is not irreducible.

(4) If F = R, show that f(t) = t2 + 1 is irreducible. [Hint: If f(t) = g(t)h(t), what can you say about the
degrees of g and h? And what does that say about solutions to f(t)?]

(5) For each of the primes p = 2, 3, 5, 7, indicate which of the following polynomials has a solution in Z/pZ.
[You’ll need to just compute.]

(a) t2 + 1 (i.e., which of these finite fields has a square root to −1?)
(b) t3 − 2 (i.e., which of these fields has a cube root to 2?)
(c) t2 + t+ 1 (i.e., for which of these fields does this polynomial factor?)

11.14 Principal Ideal Domains
Exercise 11.14. Let R be an integral domain. We call R a principal ideal domain if every ideal I ⊂ R is equal
to (x) for some x ∈ R. That is, every ideal is generated by a single element.

(1) Show that Z is a principal ideal domain. [We’ve done this in class, so you can do it, too!]

(2) Let F be a field. Show that F [t] is a principal ideal domain. [Hint: If I 6= (0), let n be the least degree for
which a degree n polynomial is in I. If p(t) and q(t) are both degree n polynomials, how are they related?
Finally, given any f(t) ∈ I, what happens when you divide f(t) by p(t) and look at the remainder?]
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11.15 The Second Isomorphism Theorem
Exercise 11.15. Fix a group G. Let S ⊂ G be a subgroup, and N ◁ G be a normal subgroup.

(1) Let SN be the set of all elements in G of the form sx where s ∈ S and x ∈ N . Show this is a subgroup
of G.

(2) Show that N is a normal subgroup of SN .

(3) Show that S ∩N is a normal subgroup of S.

(4) Exhibit an isomorphism between S/(S∩N) and SN/N . [Hint: Does the equivalence class [s] in the former
group define an equivalence class [sn] in the latter group? Does the n in [sn] matter?]

11.16 Subgroups Descend to Quotient Groups
Exercise 11.16. Let G be an arbitrary group, and H ◁ G.

(1) Show that there is a bijection between the set of subgroups in G containing H, and the set of subgroups
in G/H.

(2) Show that there is a bijection between the set of normal subgroups in G containing H, and the set of
normal subgroups in G/H.

11.17 Solvable Groups
Exercise 11.17. A group G is called solvable if there exists a finite sequence of subgroups

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that for all i ⩾ 0, Gi ◁ Gi+1 and Gi+1/Gi is abelian.
(1) Show that any abelian group is solvable.

(2) Show any group of order pq, where p and q are distinct primes, is solvable.

(3) Show that if G is simple and non-abelian, G cannot be solvable.
The following is a great application of the isomorphism theorems, and of the previous problem.

(4) Show that if G is solvable, so is any subgroup of G.

(5) Show that if G is solvable, and K ⊂ G is normal, then G/K is solvable.

11.18 GLn(Fq)
Exercise 11.18. Let Fq be a finite field with q elements.

(1) Let V = Fn
q = F⊕n

q be an n-dimensional vector space over Fq. Show that G = GLn(Fq) acts transitively
on V − {0}. [That is, show that for any pair x, y ∈ V , there is some group element g so that gx = y.]

(2) Prove that G = GLn(Fq) has (
n∏

k=1

(qk − 1)

)(
n−1∏
k=1

qk

)
elements in it. [You can either count intelligently, or apply the orbit-stabilizer theorem inductively. Either
way, use matrices.]

(3) Show that GLn(Fq) has a normal subgroup of index q − 1. [Hint: The determinant is still a group
homomorphism.]

(4) Consider GL2(Fq). Assume p is the unique prime number dividing q.1 Show that |Sylp(G)| cannot equal
1. [Try thinking about upper-triangular and lower-triangular matrices, then think about special cases of
them.]

(5) How many elements of order 3 are in GL2(F3)? [You may want to start by determining the number of
Sylow 3-subgroups. Either way, dig in.]

1One can prove that any finite field has size pk for some prime p. It’s not hard——a finite field of characteristic p is a module
over Z/pZ, so is a finite-dimensional vector space over Z/pZ. But how many elements must such a set have?
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11.19 Ring Homomorphisms
Exercise 11.19.

(1) Show that a composition of two ring homomorphisms is a ring homomorphism.

(2) For a ring R, let Mk×k(R) denote the ring of k × k matrices with entries in R. Specifically, if (aij) is a
matrix whose i, jth entry is aij , we define

(aij) + (bij) = (aij + bij), (aij)(bij) =

(
k∑

l=1

ailblj

)
.

Show that if f : R→ S is a ring homomorphism, then the function

F :Mk×k(R) →Mk×k(S),

(aij) 7→ (f(aij))

(3) Prove that
f(detA) = det(F (A)).

You may want to start by proving it for k = 1, then perform induction using the cofactor definition of
determinants.

11.20 Invertible Matrices
Exercise 11.20. Let S be a ring. We say x ∈ S is a unit if there is a multiplicative inverse to x——i.e., an
element y ∈ S so that xy = yx = 1S . As an example, if S is the ring of k × k matrices in some ring R, then a
matrix is invertible if and only if it is a unit.

(1) Determine which of the following matrices is a unit in Mk×k(Z):(
2 5
4 4

) (
2 5
9 4

) 1 0 0
2 3 4
5 6 7


(b) For the primes p = 2, 3, 5, consider the ring homomorphism Z → Z/pZ sending a 7→ a. This induces a

ring homomorphism Mk×k(Z) →Mk×k(Z/pZ) by the previous problem. Determine which of the matrices
above is sent to a unit for each choice of p = 2, 3, 5.

11.21 Bases
Exercise 11.21. Let M = Z/nZ.

(1) Show that M admits no basis as a module over Z.

(2) Show that M admits a basis as a module over the ring R = Z/nZ.

11.22 Ideals are Like Normal Subgroups
Exercise 11.22. Let R be a commutative ring. Show that I ⊂ R is an ideal if and only if it is the kernel of
some ring homomorphism. (The kernel of a ring homomorphism R→ S is the set of all elements sent to 0 ∈ S.)

11.23 Characteristic
Exercise 11.23. Let F be a field, and 1 ∈ F the multiplicative identity. The characteristic of F is the smallest
integer n with n ⩾ 1 such that

1 + · · ·+ 1 = 0

where the summation has n terms in it. For instance, the characteristic of Z/pZ is p. If F is a field where
1 + · · ·+ 1 never equals 0 (like R, Q, C) we say that F has characteristic zero.

Prove that any field (finite or not!) must have either characteristic zero, or characteristic p for some prime
number p.

[By the way, there are in fact infinite fields of finite characteristic.]
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11.24 Solvability of Sn

Exercise 11.24.

(1) For n ⩾ 3, show that any cycle of length 3 is in An.

(2) Show by example that An is not abelian for n ⩾ 4.

(3) Assume An is simple for n ⩾ 5. [This is a theorem we stated, but never proved.] Explain why Sn is not
solvable for any n ⩾ 5.

(4) Show that Sn is solvable for n ⩽ 3. So all that remains is S4.

(5) Prove that S4 is solvable. [One way: You can exhibit an abelian subgroup of order 4 in A4.]
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Final Exam Practice Problems

Matrices and Cayley-Hamilton

12.1 Basics in Characteristic Polynomials
Exercise 12.1.

(1) Let F be a field, and A a k × k matrix with entries in F . Show that A is not conjugate to an upper-
triangular matrix unless its characteristic polynomial can be factored into (possibly non-distinct) linear
polynomials in F [t].

(2) Given an example of a matrix in a field F whose characteristic polynomial cannot be factored into linear
polynomials.

(3) Prove that if A is a k × k matrix with entries in a field F , its characteristic polynomial ∆(t) is a degree
k polynomial in F [t], and that the degree k − 1 coefficient of ∆(t) is −tr(A). [Here, tr(A) is the trace of
A——the sum of its diagonal entries.]

(4) Prove that the constant term of ∆(t) is (−1)k detA.

12.2 Matrices are Linear Transformations
Exercise 12.2. Let R be a commutative ring and R⊕k the free module on k generators. Show there is a ring
isomorphism

T :Mk×k(R) → HomR(R
⊕k, R⊕k)

given by sending a matrix A to the homomorphism TA sending the ith standard basis element of R⊕k to the
element

k∑
j=1

Ajiej .

If you are lazy and don’t want to do every part of the proof, here is the most important part: prove that
TAB = TA ◦ TB , so that matrix multiplication is sent to composition of functions.

Remark. Recall that a homomorphism from R⊕k to any module M is determined by the choice of k elements
x1, . . . , xk in M , simply be declaring that ei ∈ R⊕k get sent to xi.

Remark. To be clear, the target of T is the set of all left R-module homomorphisms from R⊕k to itself.

Remark. By the way, this ring isomorphism is the justification for saying that a linear map from a finite-
dimensional vector space over F to itself is the same thing as a matrix——in this case, R = F , and every
finite-dimensional vector space over F is isomorphic to F⊕k for some k.

12.3 Some Cayley-Hamilton Applications
Exercise 12.3. Let F be a field of characteristic p. Let A be an upper-triangular k × k matrix with entries in
F.

29
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(1) Assume A’s diagonal entries are equal to 1. Show that for the values (3, 3), (5, 5), and (4, 2) of (k, p), Ak

is equal to (−1)k−1I.

(2) With the hypothesis as in (1), prove that A is an element whose order must divide k or 2k.

12.4 More Cayley-Hamilton
Exercise 12.4. Let F be a field and A an k × k matrix with entries in F . When you want to compute f(A)
where f(t) is some high-degree polynomial in t, note that by the division algorithm for polynomials, we can
write

f(t) = q(t)∆(t) + r(t)

where ∆(t) is the characteristic polynomial of A. Then we have

f(A) = q(A)∆(A) + r(A) = r(A)

since ∆(A) = 0 by the Cayley-Hamilton theorem. This reduces a potential costly calculation into two steps: A
division of polynomials (to find r) and then a degree k − 1 computation given by evaluating r(A).

(1) If A is a 2×2 matrix which is not invertible in F , prove that A2 is always a scalar multiple of A. Moreover,
prove that A2 is obtained from A by scaling via the trace of A.

(2) Let A be a 3 × 3 matrix which is not invertible, and which has trace zero. Compute A1000 in terms of
A2 and the degree 1 coefficient of ∆(t). Derive a general formula for AN in terms of A2 and the degree 2
coefficient of ∆(t).

(3) Let

A =

1 2 3
1 0 −1
5 2 −1

 .

Compute A2014 using the methods above.

(4) What is A2014 if you consider A as a matrix with entries in F = Z/2Z?

Rings and Ideals

12.5 Basics of Rings
Exercise 12.5.

(1) Give an example of a non-commutative ring with a zero divisor. [Make sure to identify the zero divisor.]

(2) Give an example of a commutative ring with a zero divisor.

12.6 Prime Ideals
Exercise 12.6. Let R be a commutative ring. An ideal I is called prime if whenever xy ∈ I, we have that
either x ∈ I or y ∈ I.

(1) Let f ∈ R be an irreducible element and R a PID. Show that the ideal generated by f is prime.

(2) Recall that a commutative ring is called a domain if it has no zero divisors. Show that if I is a prime
ideal of R, then R/I is a domain.

12.7 Prime Ideals and Maximal Ideals
Exercise 12.7. Let R be a commutative ring.

(1) Show that every maximal ideal in R is a prime ideal.

(2) Show that if R is a PID, then every non-zero prime ideal is maximal.
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12.8 A Ring that is Not a PID
Exercise 12.8.

(1) Let F be a field, and let R = F [x1, x2] be the ring of polynomials with two variables. Exhibit an ideal in
R that is not principal.

(2) Show that Z[x]——the ring of polynomials with Z coefficients——is not a principal ideal domain.

Modules

12.9 Z-modules
Exercise 12.9.

(1) Show that a Z-module is the same thing as an abelian group.

(2) Show that a map of Z-modules (i.e., a Z-linear homomorphism between Z-modules) is the same thing as
a homomorphism of abelian groups.

12.10 Z[t]-modules
Exercise 12.10. Show that a Z[t]-module structure on an abelian group M is the same thing as giving an
abelian group homomorphism from M to itself.

12.11 Submodules
Exercise 12.11. Let M be a left R-module. Recall that an R-submodule of M is a subgroup N ⊂ M such
that rx ∈ N for all r ∈ R, x ∈ N .

(1) Show that the intersection of two submodules is a submodule.

(2) If R is a commutative ring and R =M , show that a submodule of M is the same thing as an ideal of R.

12.12 Not All Modules are Free
Exercise 12.12. Give an example of a ring R and a left module M such that M is not isomorphic to a free
R-module.

Computations

12.13 Computations with Matrices
Exercise 12.13. Consider the matrices(

1 4
5 7

)
,

(
1 3
7 9

)
,

(
2 4
6 8

)
.

(1) Which of them are invertible as elements of M2×2(Z)?

(2) Which are invertible as elements of M2×2(Z/2Z)?

(3) Which are invertible as elements of M2×2(Z/7Z)?
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12.14 Polynomial Roots
Exercise 12.14. Consider the polynomials

t3 + 2t+ 1, t4 + 1, t2 + 3.

(1) Which of these are irreducible elements of Z/2Z[t]?

(2) Which of these are irreducible elements of Z/3Z[t]?

(3) Which of these are irreducible elements of Z/5Z[t]?

Classification of Finitely Generated PIDs

12.15 Statement
Exercise 12.15. State the classification of finitely generated modules over a PID.

12.16 Classifying Abelian Groups
Exercise 12.16.

(1) How does the theorem let us classify finitely generated abelian groups?

(2) Classify all abelian groups of order 12.

(3) Classify all abelian groups of order 16.

12.17 Another Way to Phrase Classification of Abelian Groups
Exercise 12.17.

(1) Let k, m, n be integers. Prove that Z/kZ ∼= Z/mZ× Z/nZ if and only if k = mn and m, n are relatively
prime.

(2) Assume the classification of finitely generated abelian groups stated in class. Prove: If A is a finitely
generated abelian group, it is isomorphic to a group of the form

Z/n1Z⊕ · · · ⊕ Z/nkZ

where ni divides ni+1 for all 1 ⩽ i ⩽ k − 1.

Groups

12.18 Your Common Mistakes
Exercise 12.18.

(1) Give an example of a group G, and an abelian subgroup H ⊂ G, such that H is not normal in G.

(2) Give an example of a group G, and a sequence of subgroups

G1 ⊂ G2 ⊂ G

such that G1 ◁ G2 and G2 ◁ G, but G1 is not normal in G.

12.19 Sylow’s Theorems
Exercise 12.19. Let np denote the number of Sylow p-subgroups of G.

(1) Let G = S4. Compute n2.

(2) Let G = S4. Compute n3.

(3) Let G = D2p, the dihedral group with 2p elements, where p > 2 is a prime. Compute n2 and np.
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12.20 Actions and Orbit-stabilizer
Exercise 12.20.

(1) Show that H ◁ G if and only if the normalizer of H is all of G.

(2) Let G be a finite group, and H ⊂ G a subgroup. Show that the number of subgroups of G conjugate to
H is equal to the size of G, divided by the order of the normalizer of H.

(3) Let x ∈ G be an element, with |G| finite. Show that the number of elements conjugate to x is equal to
the size of G, divided by the number of elements that commute with x.

12.21 Prove Lagrange’s Theorem
Exercise 12.21. Prove Lagrange’s Theorem.

12.22 Cayley’s Theorem
Exercise 12.22.

(1) Show that every group acts on itself.

(2) Show that every finite group is isomorphic to a subgroup of Sn for some n. This is called Cayley’s Theorem.

12.23 Groups of Order 8
Exercise 12.23. Recall the quaternion ring, otherwise called the Hamiltonians. Consider the set

Q = {±1,±i,±j,±k} ⊂ R4

where
1 = (1, 0, 0, 0) i = (0, 1, 0, 0) j = (0, 0, 1, 0) k = (0, 0, 0, 1).

(1) Show that Q is a group of order 8.

(2) Show that Q is non-abelian,

(3) Write down all subgroups of Q.

(4) Show that Q is not isomorphic to D2·4 = D8, the dihedral group with 8 elements.

12.24 Some Big Theorems
Exercise 12.24.

(1) Let p be a prime number. If n ∈ Z is not divisible by p, prove that

np−1 − 1

is divisble by p. This is called Fermat’s little theorem. [Hint: If Z/pZ is a field, what can you say about
Z/pZ− {0}?]

(2) Show that every finite group is isomorphic to a subgroup of Sn for some n. This is called Cayley’ theorem.
[Hint: Every group acts on itself by left multiplication. ]
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Terms You Need to Know
(1) Group

(2) Finite group

(3) Isomorphism

(4) Subgroup

(5) Homomorphism

(6) Trivial homomorphism (i.e., one whose image is {1})

(7) Order of an element g (size of 〈g〉——equivalently, smallest n ⩾ 1 for which gn = 1. Orders can be
infinite.)

(8) Order of a group (number of elements in the group——possibly infinite)

(9) Abelian group

(10) p-Sylow subgroup

(11) Normal subgroup

(12) Quotient group

(13) Simple group

(14) Automorphisms of a set (i.e., a bijection from a set to itself)

(15) Automorphisms of a group (i.e., a group isomorphism from a group to itself)

(16) Group action

(17) Orbits

(18) Disjoint union

(19) Center of a group (the set of all x such that gx = xg for all g ∈ G.)

(20) Direct product of groups

(21) Semidirect product

(22) Characteristic polynomial of a matrix with entries in a field F

(23) Ring

(24) Multiplicative identity of a ring

(25) Additive identity of a ring

(26) Ring homomorphism (remember that 1 must be sent to 1!)

(27) Left R-module (sometimes, simply called an R-module; especially if R is commutative)

(28) A homomorphism of left R-modules (a.k.a. R-linear map)

(29) Direct sum M ⊕N of R-modules

(30) Ideals

(31) Ideal generated by a single element

(32) Quotient rings

(33) Field

(34) Vector space (i.e., a module over a field)

(35) Algebraically closed field
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(36) Polynomial ring F [t]

(37) Irreducible polynomial

(38) Upper triangular matrix

(39) Cayley-Hamilton theorem

(40) Relatively prime numbers (i.e., those such that gcd = 1.)

Some of the Idea You Want to Know
(1) How to pass from semidirect products to split short exact sequences (Given L⋊ϕR, there is the inclusion

L → L ⋊ϕ R given by l 7→ (l, 1R) and j : R → L ⋊ϕ R given by j(r) = (1L, r). Then the short exact
sequence L→ L⋊ϕ R→ R is split by j.)

(2) How to pass from split short exact sequences to semidirect products (L→ H → R, j : R→ H means j(R)
acts on L by conjugation, meaning one has a homomorphism ϕ : R ∼= j(R) → Aut(L), so a semidirect
product L ⋊ϕ R. you haven’t lost information because the map L ⋊ϕ R → H given by (l, r) 7→ l · j(r) is
an isomorphism, and L⋊ϕ R has the obvious split short exact sequences L→ L⋊ϕ R→ R, R→ L⋊ϕ R.
We are identifying L with its image in H.)

(3) Classify all abelian groups of finite order.

(4) Classification theorem of finitely generated modules over a PID

(5) Using Sylow’s theorems to count Sylow subgroups

(6) Characteristic polynomials don’t change under conjugation——so det(tI − A) = det(tI − BAB−1), re-
gardless of the field in which the A takes entries.
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