


Preface

This solution manual is a dedicated companion to the renowned textbook Prin-
ciples of Quantum Mechanics by R. Shankar. It is designed to provide clear
and comprehensive solutions to the problems presented in the original work,
aiding students, researchers, and enthusiasts in their pursuit of understanding
quantum mechanics.

Quantum mechanics, as a cornerstone of modern physics, challenges intu-
ition with its abstract principles and intricate mathematical framework. The
problems in R. Shankar’s text are carefully crafted to deepen comprehension
and enhance problem-solving skills. This manual seeks to complement that ef-
fort by providing detailed and accessible solutions, bridging the gap between
theoretical concepts and practical application.

This work is created with the intention of supporting readers at all levels,
whether they are delving into quantum mechanics for the first time or revisiting
its concepts with a fresh perspective. While every effort has been made to ensure
the accuracy and clarity of the solutions, mistakes can occasionally occur.

If you identify any errors or have suggestions for improvement, please do not
hesitate to contact me at

liang@xumin.sx.cn

Updates and corrections to this manual will be made available at

https://xumin-liang.net

I hope that this manual serves as a helpful resource, making the journey
through quantum mechanics both engaging and rewarding.

Xumin Liang
November 24, 2024
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Chapter 1

Mathematical Introduction

1.1 Linear Vector Spaces: Basics
Exercise 1.1.1. Verify these claims. For the first consider |0⟩+ |0′⟩ and use the
advertised properties of the two null vectors in turn. For the second start with
|0⟩ = (0 + 1)|V ⟩+ | − V ⟩. For the third, begin with |V ⟩+ (−|V ⟩) = 0|V ⟩ = |0⟩.
For the last, let |W ⟩ also satisfy |V ⟩+ |W ⟩ = |0⟩. Since |0⟩ is unique, this means
|V ⟩+ |W ⟩ = |V ⟩+ | − V ⟩. Take it from here.

Solution.

(1) |0⟩ is unique.

Proof. For an arbitrary state ket |V ⟩,

(a) |V ⟩+ |0⟩ = |V ⟩
(b) |V ⟩+ |0′⟩ = |V ⟩

Set |V ⟩ = |0′⟩ in (i) ⇒ |0′⟩+ |0⟩ = |0′⟩;
Set |V ⟩ = |0⟩ in (ii) ⇒ |0⟩ + |0′⟩ = |0⟩; Therefore, by commutativity of
vector addition, we have

|0′⟩ = |0′⟩+ |0⟩ = |0⟩+ |0′⟩ = |0⟩

(2) 0|V ⟩ = |0⟩

Proof. 1|V ⟩ = (1 + 0)|V ⟩ = 1|V ⟩+ 0|V ⟩, where 1|V ⟩ = |V ⟩. Therefore

|V ⟩ = |V ⟩+ 0|V ⟩

Since |V ⟩ is arbitrary here, compared with the definition of |0⟩, which is
|V ⟩+ |0⟩ = |V ⟩ for any |V ⟩, plus |0⟩ is unique, we can conclude that

0|V ⟩ = |0⟩.

1
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(3) | − V ⟩ = −|V ⟩

Proof. For arbitrary |V ⟩,

|V ⟩+ (−|V ⟩) = 0|V ⟩ = |0⟩.

By definition of | − V ⟩, which is |V ⟩+ | − V ⟩ = 0, we can conclude that

| − V ⟩ = −|V ⟩.

(4) | − V ⟩ is the unique addtive inverse of |V ⟩.

Proof. Suppose there exists another vector |W ⟩, satisfying |W ⟩ = −|V ⟩,
then

|V ⟩+ |W ⟩ = |V ⟩ − |V ⟩
= (1− 1)|V ⟩
= 0|V ⟩
= |0⟩

Add | − V ⟩ on the both sides, we have

|V ⟩+ |W ⟩+ | − V ⟩ = |0⟩+ | − V ⟩
|W ⟩+ (|V ⟩+ | − V ⟩) = | − V ⟩

|W ⟩+ |0⟩ = | − V ⟩

Therefore,
|W ⟩ = | − V ⟩

Exercise 1.1.2. Consider the set of all entities of the form (a, b, c) where the
entries are real numbers. Addition and scalar multiplication are defined as
follows:

(a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f)

α(a, b, c) = (αa, αb, αc).

Write down the null vector and inverse of (a, b, c). Show that vectors of the
form (a, b, 1) do not form a vector space.

Solution.

• Null vector of (a, b, c): By definition, for any |V ⟩,

|V ⟩+ |0⟩ = |V ⟩.

Set |0⟩ = (a0, b0, c0), |V ⟩ = (a, b, c), where a, b, c are arbitrary numbers.
Then

|0⟩+ |V ⟩ = (a0, b0, c0) + (a, b, c)

= (a0 + a, b0 + b, c0 + c)

= |V ⟩
= (a, b, c)
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⇒


a0 + a = a

b0 + b = b

c0 + c = c

⇒


a0 = 0

b0 = 0

c0 = 0

Therefore, the null vector of (a, b, c) is (0, 0, 0).

• Inverse vector of (a, b, c): Suppose the inverse vector of (a, b, c) is (ā, b̄, c̄).
By definition,

(a, b, c) + (ā, b̄, c̄) = |0⟩ = (0, 0, 0)

(a+ ā, b+ b̄, c+ c̄) = (0, 0, 0)

⇒


a+ ā = 0

b+ b̄ = 0

c+ c̄ = 0

⇒


ā = −a
b̄ = −b
c̄ = −c

Therefore, the inverse vector of (a, b, c) is (−a,−b,−c).

• {(a, b, 1)} does not form a vector space since

(a) It violates the closure under addition, i.e.

(a1, b1, 1) + (a2, b2, 1) = (a1 + a2, b1 + b2, 2) /∈ {(a, b, 1)}.

(b) It violates the closure under scalar multiplication, i.e.

ω(a1, b1, 1) = (ωa1, ωb1, ω) /∈ {(a, b, 1)}

as long as ω ̸= 1.
(c) There is no null vector, i.e.

(0, 0, 0) /∈ {(a, b, 1)}.

(d) The inverse does not exist, i.e.

(−a,−b,−1) /∈ {(a, b, 1)}

Exercise 1.1.3. Do functions that vanish at the end points x = 0 and x = L
form a vector space? How about periodic functions obeying f(0) = f(L) ? How
about functions that obey f(0) = 4 ? If the functions do not qualify, list the
things that go wrong.

Solution.

(1) {f(x)}, f(0) = f(L) = 0, form a vector space.

(2) {f(x)}, periodic functions obeying f(0) = f(L), form a vector space. If
you want to prove the property of closure in this problem, please mention
that f(x) + g(x) and αf(x) are also periodic functions. That is, f(0) +
g(0) = f(L) + g(L), αf(0) = αf(L).

(3) {f(x)}, f(0) = 4, do not form a vector space, since

(a) If g(x), h(x) ∈ {f(x)}, then g(x)+h(x) /∈ {f(x)}, since g(0)+h(0) =
8 ̸= 4.
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(b) If g(x) ∈ {f(x)}, then λg(x) /∈ {f(x)}, since λg(0) = 4λ ̸= 4, as long
as λ ̸= 1.

(c) No null vector. g(x) ≡ 0 /∈ {f(x)}, since g(0) = 0 ̸= 4.
(d) If g(x) ∈ {f(x)}, then the inverse −g(x) /∈ {f(x)}, since −g(0) =

−4 ̸= 4.

Exercise 1.1.4. Consider three elements from the vector space of real 2 × 2
matrices:

|1⟩ =
(
0 1
0 0

)
|2⟩ =

(
1 1
0 1

)
|3⟩ =

(
−2 −1
0 −2

)
Are they linearly independent? Support your answer with details. (Notice we
are calling these matrices vectors and using kets to represent them to emphasize
their role as elements of a vector space.)

Solution. Suppose α1|1⟩+ α2|2⟩+ α3|3⟩ = 0. We have(
0 · α1 + 1 · α2 + (−2) · α3 1 · α1 + 1 · α2 + (−1) · α3

0 · α1 + 0 · α2 + 0 · α3 0 · α1 + 1 · α2 + (−2) · α3

)
=

(
0 0
0 0

)

⇒

{
α2 − 2α3 = 0

α1 + α2 − α3 = 0

⇒

{
α1 = −α3

α2 = 2α3

It is not necessary for α1, α2 and α3 to be 0 together. Therefore, |1⟩, |2⟩ and
|3⟩ are linearly dependent.

Exercise 1.1.5. Show that the following row vectors are linearly dependent:
(1, 1, 0), (1, 0, 1), and (3, 2, 1). Show the opposite for (1, 1, 0), (1, 0, 1), and
(0, 1, 1).

Solution. Suppose α1(1, 1, 0) + α2(1, 0, 1) + α3(3, 2, 1) = 0. Then
α1 + α2 + 3α3 = 0

α1 + 2α3 = 0

α2 + α3 = 0

⇒

{
α1 = −2α3

α2 = −α3

When α3 ̸= 0. α1, α2, α3 can have non-zero values. Therefore, (1, 1, 0), (1, 0, 1),
(3, 2, 1) are linearly dependent.

Suppose α1(1, 1, 0) + α2(1, 0, 1) + α3(0, 1, 1) = 0. Then
α1 + α2 = 0

α1 + α3 = 0

α2 + α3 = 0

⇒


α1 = 0

α2 = 0

α3 = 0

is the only solution.

Therefore, (1, 1, 0), (1, 0, 1), (0, 1, 1) are linearly independent.
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1.2 Inner Product Spaces

1.3 Dual Spaces and the Dirac Notation
Exercise 1.3.1. Form an orthonormal basis in two dimensions starting with
A⃗ = 3⃗i + 4⃗j and B⃗ = 2⃗i − 6⃗j. Can you generate another orthonormal basis
starting with these two vectors? If so, produce another.

Solution. Using Gram-Schmidt process here, starting from A⃗.

e⃗1 =
A⃗

|A⃗|
=

3⃗i+ 4⃗j√
32 + 42

=
3

5
i⃗+

4

5
j⃗

e⃗′2 = B⃗ − (B⃗ · e⃗1)e⃗1

= (2⃗i− 6⃗j)−
(
6

5
− 24

5

)(
3

5
i⃗+

4

5
j⃗

)
=

(
2 +

54

25

)
i⃗+

(
−6 +

72

25

)
j⃗

=
104

25
i⃗− 78

25
j⃗

e⃗2 =
e⃗′2
|e⃗′2|

=
104
25 i⃗−

78
25 j⃗√(

104
25

)2
+
(
78
25

)2 =
4

5
i⃗− 3

5
j⃗

Therefore, the new basis is e⃗1 = 3
5 i⃗+

4
5 j⃗, e⃗2 = 4

5 i⃗−
3
5 j⃗.

Exercise 1.3.2. Show how to go from the basis

|I⟩ =

3
0
0

 |II⟩ =

0
1
2

 |III⟩ =

0
2
5


to the orthonormal basis

|1⟩ =

1
0
0

 |2⟩ =

 0

1/
√
5

2/
√
5

 |3⟩ =

 0

−2/
√
5

1/
√
5


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Solution.

|1⟩ = |I⟩√
⟨I | I⟩

=
1

3

3
0
0

 =

1
0
0


|2′⟩ = |II⟩ − (⟨1 | II⟩)|1⟩

=

0
1
2

− 0 ·

1
0
0


=

0
1
2


|2⟩ = |2′⟩√

⟨2′ | 2′⟩
=

1√
5

0
1
2

 =

 0

1/
√
5

2/
√
5


|3′⟩ =| III⟩ − (⟨1 | II⟩)|1⟩ − (⟨2 | III⟩)|2⟩

=

0
2
5

− 0 ·

1
0
0

−
(
0 +

2√
5
+

10√
5

) 0

1/
√
5

2/
√
5


=

0
2
5

−

 0
12/5
24/5


=

 0
−2/5
1/5


|3⟩ = |3′⟩√

⟨3′ | 3′⟩
=

 0

−2/
√
5

1/
√
5


Exercise 1.3.3. When will this equality

⟨V | V ⟩ = ⟨W | V ⟩⟨V |W ⟩
|W |2

be satisfied? Does this agree with your experience with arrows?
Solution. When |V ⟩ = C|W ⟩, we have

⟨V | V ⟩ = |C|2⟨W |W ⟩ = |C|2|W |2

Also
⟨W | V ⟩⟨V |W ⟩ = (C⟨W |W ⟩)(C⋆⟨W |W ⟩)

= |C|2⟨W |W ⟩⟨W |W ⟩
= |C|2|W |4

Hence,
⟨V | V ⟩ = ⟨W | V ⟩⟨V |W ⟩

|W |2

When two arrows are parallel or anti-parallel with each other, the square of
their inner product equals to the product of their norms.
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Exercise 1.3.4. Prove the triangle inequality starting with |V + W |2. You
must use Re⟨V |W ⟩ ⩽ |⟨V |W ⟩| and the Schwarz inequality. Show that the final
inequality becomes an equality only if |V ⟩ = a|W ⟩ where a is a real positive
scalar.

Solution. Re⟨V |W ⟩ ⩽ |⟨V |W ⟩| ⩽ |V ||W |

⇒ Re⟨V |W ⟩ ⩽ 2|V ||W |

Add |V |2 + |W |2 to both sides of the inequality above, we have

⟨V | V ⟩+ 2Re⟨V |W ⟩+ ⟨W |W ⟩ ⩽ |V |2 + |W |2 + 2|V ||W |

LHS = ⟨V | V ⟩+ ⟨V |W ⟩+ ⟨W | V ⟩+ ⟨W |W ⟩
= ⟨V +W | V +W ⟩
= |V +W |2

RHS = (|V |+ |W |)2

Therefore,
|V +W |2 ⩽ (|V |+ |W |)2

⇒ |V +W | ⩽ |V |+ |W | (the triangular inequality)
Attention: We are supposed to prove the equality holds only if |V ⟩ = α|W ⟩,
where α is a real number.

The equality holds only if the following two equalities hold:

(a) ⟨V |W ⟩ = |V ||W |

(b) Re⟨V |W ⟩ = |⟨V |W ⟩|

From the proof process of the Schwarz inequality in Shankar, we know that
equality (a) holds only if

|Z⟩ = |V ⟩ − ⟨W | V ⟩
|W |2

|W ⟩ = 0

which means |V ⟩ must be able to expressed as α|W ⟩, where α is a number. To
prove that α must be real, we substitude |V ⟩ = α|W ⟩ into equality (b) above.

⟨V |W ⟩ = α⋆⟨V | V ⟩

To satisfy equality (b), ⟨V |W ⟩ must be real. Since ⟨V | V ⟩ is real, α⋆ must be
real. Therefore, α must be a real number.

1.4 Subspaces
Exercise 1.4.1. In a space Vn, prove that the set of all vectors

{∣∣V 1
⊥
〉
,
∣∣V 2

⊥
〉
, . . .

}
,

orthogonal to any |V ⟩ ̸= |0⟩, form a subspace Vn−1.

Solution. Given a vector space Vn, one can start with an arbitrary vector
|V ⟩ ̸= 0 and construct n−1 other vectors orthogonal to this |V ⟩ through Gram-
Schmidt process. Since these n− 1 vectors are linear independent, they span a
Vn−1 subspace. Now we prove that this subspace Vn−1 is the set of all vectors
orthogonal to |V ⟩.
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(1) Every vector in Vn−1 is orthogonal to |V ⟩: Since every vector in Vn−1 can
be expressed as a linear combination of the n− 1 vectors we constructed

above |V⊥⟩ =
n−1∑
i=1

αi|Vi⟩, and ⟨V | V⊥⟩ =
n−1∑
i=1

αi⟨V | Vi⟩ = 0, because

⟨V | Vi⟩ = 0 for each Vi.

(2) Every vector in Vn but outside Vn−1 is not orthogonal to |V ⟩: Since this

kind of vectors can be expressed as |W ⟩ = α|V ⟩+
n−1∑
i=1

αi|Vi⟩, where α ̸= 0.

Therefore ⟨V |W ⟩ = α⟨V | V ⟩ = α ̸= 0.

Exercise 1.4.2. Suppose Vn1
1 and Vn2

2 are two subspaces such that any element
of V1 is orthogonal to any element of V2. Show that the dimensionality of V1⊕V2

is n1 + n2. (Hint: Theorem 4.)

Solution. Since Vn1
1 and Vn2

2 are two subspace orthogonal to each other, we
can take the n1 basis vectors of Vn1

1 and the n2 basis vectors of Vn2
2 , and put

them together. Because these n1+n2 vectors are orthogonal to each other, they
can span a Vn1+n2 subspace. We now prove that this Vn1+n2 is nothing but the
V1 ⊕ V2.

(1) Every vector in Vn1+n2 is in V1 ⊕ V2:

Since each vector in Vn1+n2 can be expressed as |U⟩ =
n1∑
i=1

αi|Vi⟩+
n2∑
j=1

βj |Wj⟩,

where {|Vi⟩}, {|Wj⟩} are basis vectors of V1 and V2 respectively. Notice
that

n1∑
i=1

αi|Vi⟩ is a vector in V1, and
n2∑
j=1

bj |Wj⟩ is a vector in V2. Therefore

|U⟩ can be expressed as a combination of vectors from V1 and V2. Accord-
ing to the definition of V1⊕V2 (Definition 12 in Shankar), |U⟩ ∈ V1⊕V2.

(2) Every vector in V1 ⊕ V2 is in Vn1+n2 :
Every vector in V1 ⊕ V2 can be expressed as |Z⟩ = C1|Z1⟩ + C2|Z2⟩,
where |Z1⟩ ∈ Vn1

1 , |Z2⟩ ∈ Vn2
2 . Therefore, |Z1⟩ =

n1∑
i=1

pi|Vi⟩, and |Z2⟩ =

n2∑
j=1

qj |Wj⟩. Thus, |Z⟩ =
n1∑
i=1

C1pi|Vi⟩+
n2∑
j=1

C2qj |Wj⟩, which lies in Vn1+n2 .

Therefore, by theorem 4 in Shankar, there are n1 + n2 orthogonal vectors in
V1 ⊕ V2, so the dimension of V1 ⊕ V2 is n1 + n2.

1.5 Linear Operators

1.6 Matrix Elements of Linear Operators
Exercise 1.6.1. An operator Ω is given by the matrix0 0 1

1 0 0
0 1 0


What is its action?
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Solution. To see Ω’s action, let’s act on basis vectors:

Ω|1⟩ =

0 0 1
1 0 0
0 1 0

1
0
0

 =

0
1
0

 = |2⟩

Ω|2⟩ =

0 0 1
1 0 0
0 1 0

0
1
0

 =

0
0
1

 = |3⟩

Ω|3⟩ =

0 0 1
1 0 0
0 1 0

0
0
1

 =

1
0
0

 = |1⟩

This is a cyclic permutation of the three basis vectors.
It is equivalent to rotation of the coordinate axis along (1, 1, 1) by 2π

3 .

Exercise 1.6.2. Given Ω and Λ are Hermitian what can you say about (1) ΩΛ;
(2) ΩΛ+ ΛΩ; (3) [Ω,Λ]; and (4) i[Ω,Λ] ?

Solution.

(1) Not Hermitian: (ΩΛ)† = Λ†Ω† = ΛΩ ̸= ΩΛ

(2) Hermitian:
(ΩΛ + ΛΩ)† = (ΩΛ)† + (ΛΩ)†

= Λ†Ω† +Ω†Λ†

= ΛΩ+ ΩΛ

= ΩΛ+ ΛΩ

(3) Anti-Hermitian:
[Ω,Λ]

†
= (ΩΛ− ΛΩ)†

= (ΩΛ)† − (ΛΩ)†

= Λ†Ω† − Ω†Λ†

= ΛΩ− ΩΛ

= −(ΩΛ− ΛΩ)

= −[Ω,Λ]

(4) Hermitian:
(i [Ω,Λ])† = −i [Ω,Λ]

†

= −i · (− [Ω,Λ])

= [Ω,Λ]

Exercise 1.6.3. Show that a product of unitary operator is unitary.

Solution. Suppose U1, U2 are unitary, which means that

U†
1U1 = I = U †

2U2
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Therefore,
(U1U2)

†(U1U2) = U †
2U

†
1U1U2

= U †
2 (U

†
1U1)U2

= U †
2 IU2

= U †
2U2

= I
Hence a product of unitary operator is unitary.

Exercise 1.6.4. It is assumed that you know (1) what a determinant is, (2) that
detΩT = detΩ (T denotes transpose), (3) that the determinant of a product
of matrices is the product of the determinants. [If you do not, verify these
properties for a two-dimensional case

Ω =

(
α β
γ δ

)
with detΩ = (αδ − βγ).] Prove that the determinant of a unitary matrix is a
complex number of unit modulus.

Solution. Suppose U is the unitary matrix, which means that it satisfies

U†U = I

Take determinant of the both sides, we get

det(U†U) = det(I)
det(U†) det(U) = 1

det((UT)⋆) det(U) = 1

(det(UT))⋆ det(U) = 1

(det(U))⋆ det(U) = 1

| det(U)|2 = 1

| det(U)| = 1

Therefore, det(U) is a complex number of unit modulus.

Exercise 1.6.5. Verify that R
(
1
2πi
)

is unitary (orthogonal) by examining its
matrix.

Solution. We know from Example 1.6.1,

R

(
1

2
πi

)
=

1 0 0
0 0 −1
0 1 0


Therefore,

R

(
1

2
πi

)†

R

(
1

2
πi

)
=

1 0 0
0 0 1
0 −1 0

1 0 0
0 0 −1
0 1 0

 =

1 0 0
0 1 0
0 0 1

 = I

Hence, R
(
1
2πi
)

is unitary.
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Exercise 1.6.6. Verify that the following matrices are unitary:

1

21/2

(
1 i
i 1

)
,

1

2

(
1 + i 1− i
1− i 1 + i

)
Verify that the determinant is of the form eiθ in each case. Are any of the above
matrices Hermitian?

Solution.

• 1
21/2

(
1 i
i 1

)
is unitary, since

1

21/2

(
1 i
i 1

)†

· 1

21/2

(
1 i
i 1

)
=

1

2

(
1 −i
−i 1

)(
1 i
i 1

)
=

1

2

(
2 0
0 2

)
= I

The determinant of 1
21/2

(
1 i
i 1

)
is of eiθ form, since

det

[
1

21/2

(
1 i
i 1

)]
=

(
1

21/2

)2

(1·1−i·i) = 1 = eiθ, where θ = 2kπ for k ∈ Z

1
21/2

(
1 i
i 1

)
is not Hermitian, since

1

21/2

(
1 i
i 1

)†

=
1

21/2

(
1 −i
−i 1

)
̸= 1

21/2

(
1 i
i 1

)

• 1
2

(
1 + i 1− i
1− i 1 + i

)
is unitary, since

1

2

(
1 + i 1− i
1− i 1 + i

)†

· 1
2

(
1 + i 1− i
1− i 1 + i

)
=

1

4

(
1− i 1 + i
1 + i 1− i

)(
1 + i 1− i
1− i 1 + i

)
=

1

4

(
4 0
0 4

)
= I

The determinant of 1
2

(
1 + i 1− i
1− i 1 + i

)
is of eiθ form, since

det

[
1

2

(
1 + i 1− i
1− i 1 + i

)]
=

(
1

2

)2

[(1 + i)2 − (1− i)2] = i

where θ = 2kπ + π
2 for k ∈ Z. 1

2

(
1 + i 1− i
1− i 1 + i

)
is not Hermitian, since

1

2

(
1 + i 1− i
1− i 1 + i

)†

=
1

2

(
1− i 1 + i
1 + i 1− i

)
̸= 1

2

(
1 + i 1− i
1− i 1 + i

)
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1.7 Active and Passive Transformations
Exercise 1.7.1. The trace of a matrix is defined to be the sum of its diagonal
matrix elements

TrΩ =
∑
i

Ωii

Show that

(1) Tr(ΩΛ) = Tr(ΛΩ).

(2) Tr(ΩΛθ) = Tr(ΛθΩ) = Tr(θΩΛ) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i⟩ →
U |i⟩. [Equivalently, show TrΩ = Tr

(
U †ΩU

)
.]

Solution.

(1) Tr(ΩΛ) =
∑
i

(ΩΛ)ii =
∑
i

∑
j

ΩijΛji =
∑
j

∑
i

ΛjiΩij =
∑
j

(ΛΩ)jj = Tr(ΛΩ).

(2)
Tr(ΩΛθ) =

∑
i

(ΩΛθ)ii =
∑
i

∑
j

∑
k

ΩijΛjkθki

=
∑
j

∑
k

∑
i

ΛjkθkiΩij =
∑
j

(ΛθΩ)jj = Tr(ΛθΩ)

=
∑
k

∑
i

∑
j

θkiΩijΛjk =
∑
k

(θΩΛ)kk = Tr(θΩΛ)

(3) Tr(U†ΩU) = Tr(ΩUU †) = Tr(ΩI) = Tr(Ω).

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a
unitary change of basis. [Equivalently show detΩ = det

(
U †ΩU

)
.]

Solution.
det
(
U†ΩU

)
= detU† detΩdetU

= detΩ
(
detU † detU

)
= detΩdet

(
U †U

)
= detΩ · 1
= detΩ.

1.8 The Eigenvalue Problem
Exercise 1.8.1.

(1) Find the eigenvalues and normalized eigenvectors of the matrix

Ω =

1 3 1
0 2 0
0 1 4


(2) Is the matrix Hermitian? Are the eigenvectors orthogonal?
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Solution.

(1) To find the eigenvalues and normalized eigenvectors of the matrix Ω, we
can compute the characteristic equation

det(Ω− ωI) =

∣∣∣∣∣∣
1− ω 3 1
0 2− ω 0
0 1 4− ω

∣∣∣∣∣∣ = (1− ω)(2− ω)(4− ω) = 0

So the eigenvalues are
ω = 1, 2, 4

The eigenvectors corresponding eigenvalues are

ω = 1 :

0 3 1
0 1 0
0 1 3

x1x2
x3

 = 0 ⇒ |ω = 1⟩ =

1
0
0


ω = 2 :

−1 3 1
0 0 0
0 1 2

x1x2
x3

 = 0 ⇒ |ω = 2⟩ = 1√
30

 5
2
−1


ω = 4 :

−3 3 1
0 −2 0
0 1 0

x1x2
x3

 = 0 ⇒ |ω = 4⟩ = 1√
10

1
0
3


(2) Matrix Ω is not Hermitian, since

Ω† =

1 0 0
3 2 0
1 0 4

 ̸= Ω

The eigenvectors are not orthogonal, since

⟨ω = 1 | ω = 2⟩ = 1× 5√
30

+ 0× 2√
30

+ 0× −1√
30

=

√
30

6
̸= 0

⟨ω = 1 | ω = 4⟩ = 1× 1√
10

+ 0× 0 + 0× 3√
10

=

√
10

10
̸= 0

⟨ω = 2 | ω = 4⟩ = 5√
30

× 1√
10

+
2√
30

× 0 +
−1√
30

× 3√
10

=

√
3

15
̸= 0

Exercise 1.8.2. Consider the matrix

Ω =

0 0 1
0 0 0
1 0 0


(1) Is it Hermitian?

(2) Find its eigenvalues and eigenvectors.

(3) Verify that U †ΩU is diagonal, U being the matrix of eigenvectors of Ω.

Solution.
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(1) Matrix Ω is Hermitian since
Ω† = Ω

(2) To find the eigenvalues and eigenvectors of the matrix Ω, we can compute
the characteristic equation

det(Ω− ωI) =

∣∣∣∣∣∣
−ω 0 1
0 −ω 0
1 0 −ω

∣∣∣∣∣∣ = −ω3 + ω = −ω(ω + 1)(ω − 1) = 0

Therefore, eigenvalues are
ω = −1, 0, 1

The eigenvectors corresponding to eigenvalues are

ω = −1 :

1 0 1
0 1 0
1 0 1

x1x2
x3

 = 0 ⇒ |ω = −1⟩ = 1√
2

 1
0
−1


ω = 0 :

0 0 1
0 0 0
1 0 0

x1x2
x3

 = 0 ⇒ |ω = 0⟩ =

0
1
0


ω = 1 :

−1 0 1
0 −1 0
1 0 −1

x1x2
x3

 = 0 ⇒ |ω = 1⟩ = 1√
2

1
0
1


(3) If U is the matrix of eigenvectors of Ω, then

U =

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 U † =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


We can compute

U†ΩU =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

0 0 1
0 0 0
1 0 0

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2


=

− 1√
2

0 1√
2

0 0 0
1√
2

0 1√
2

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2


=

−1 0 0
0 0 0
0 0 1


This is a diagonal matrix.

Exercise 1.8.3. Consider the Hermitian matrix

Ω =
1

2

2 0 0
0 3 −1
0 −1 3


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(1) Show that ω1 = ω2 = 1; ω3 = 2.

(2) Show that |ω = 2⟩ is any vector of the form

1

(2a2)1/2

 0
a
−a


(3) Show that the ω = 1 eigenspace contains all vectors of the form

1

(b2 + 2c2)1/2

bc
c


either by feeding ω = 1 into the equations or by requiring that the ω = 1
eigenspace be orthogonal to |ω = 2⟩.

Solution.

(1) The characteristic equation is

det(Ω− ωI) =

∣∣∣∣∣∣
1− ω 0 0
0 3

2 − ω − 1
2

0 − 1
2

3
2 − ω

∣∣∣∣∣∣
= (1− ω)

(
3

2
− ω

)2

− (1− ω)

(
−1

2

)2

= (1− ω)

[(
3

2
− ω

)2

− 1

4

]
= (1− ω)(ω2 − 3ω + 2)

= (1− ω)(ω − 1)(ω − 2) = 0

Then the eigenvalues are

ω1 = ω2 = 1 ω3 = 2

(2) To get the eigenvector corresponding to eigenvalue ω = 2, we need to solve
the equation−1 0 0

0 − 1
2 − 1

2
0 − 1

2 − 1
2

x1x2
x3

 = 0 ⇒

{
x1 = 0

x2 + x3 = 0

Set x2 = a, we have x3 = −a. Therefore,

|ω = 2⟩ = 1√
2a2

 0
a
−a


(3) For ω = 1: 0 0 0

0 1
2 − 1

2
0 − 1

2
1
2

x1x2
x3

 = 0
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x1 is arbitrary, set x1 = b. x2−x3 = 0, set x2 = c, then x3 = c. Therefore,
the eigenvector corresponding ω = 1 is of the form

|ω = 1⟩ = 1√
b2 + 2c2

bc
c

 .

Exercise 1.8.4. An arbitrary n×n matrix need not have n eigenvectors. Con-
sider as an example

Ω =

(
4 1
−1 2

)
(1) Show that ω1 = ω2 = 3.

(2) By feeding in this value show we get only one eigenvector of the form

1

(2a2)
1/2

(
+a
−a

)
We cannot find another one that is linear independent.

Solution.

(1) The characteristic equation is

det(Ω− ωI) =
∣∣∣∣4− ω 1
−1 2− ω

∣∣∣∣ = (4− ω)(2− ω) + 1 = ω2 − 6ω + 9 = 0

Thus the eigenvalues are
ω1 = ω2 = 3

(2) By feeding this eigenvalue ω = 3, we get the equation(
1 1
−1 −1

)(
x1
x2

)
= 0 ⇒ x1 + x2 = 0

Set x1 = a, we have x2 = −a. Therefore, the eigenvector is of the form

|ω = 3⟩ = 1√
2a2

(
a
−a

)
.

This is the only eigenvector we can find.

Exercise 1.8.5. Consider the matrix

Ω =

(
cos θ sin θ
− sin θ cos θ

)
(1) Show that it is unitary.

(2) Show that its eigenvalues are eiθ and e−iθ.

(3) Find the corresponding eigenvectors; show that they are orthogonal.

(4) Verify that U†ΩU = (diagonal matrix), where U is the matrix of eigen-
vectors of Ω.
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Solution.

(1) Matrix Ω is unitary, since

Ω†Ω =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
= I

(2) Solve the characteristic equation

det(Ω− ωI) =
∣∣∣∣cos θ − ω sin θ
− sin θ cos θ − ω

∣∣∣∣ = ω2 − 2ω cos θ + 1 = 0

By Euler’s formula, we get the eigenvalues

ω = cos θ ± i sin θ = e±iθ

(3) By feeding this eigenvalue, we get the equations

ω = e−iθ :

(
i sin θ sin θ
− sin θ i sin θ

)(
x1
x2

)
= 0 ⇒ ix1 + x2 = 0

ω = eiθ :

(
−i sin θ sin θ
− sin θ −i sin θ

)(
x1
x2

)
= 0 ⇒ −ix1 + x2 = 0

Thus the corresponding eigenvectors are

|ω = e−iθ⟩ = 1√
2

(
1
−i

)
|ω = eiθ⟩ = 1√

2

(
1
i

)
They are orthogonal since

⟨ω = e−iθ | ω = eiθ⟩ = 1

2
(1 i)

(
1
i

)
=

1

2
(1 + i2) = 0

(4) The matrix of eigenvectors of Ω is

U =

(
1√
2

1√
2

− i√
2

i√
2

)
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Then

U†ΩU =

(
1√
2

i√
2

1√
2

− i√
2

)(
cos θ sin θ
− sin θ cos θ

)( 1√
2

1√
2

− i√
2

i√
2

)

=

(
1√
2
(cos θ − i sin θ) 1√

2
(sin θ + i cos θ)

1√
2
(cos θ + i sin θ) 1√

2
(sin θ − i cos θ)

)(
1√
2

1√
2

− i√
2

i√
2

)

=

(
1√
2
e−iθ i√

2
e−iθ

1√
2
eiθ − i√

2
eiθ

)(
1√
2

1√
2

− i√
2

i√
2

)

=

(
e−iθ 0
0 eiθ

)
is diagonal.

Exercise 1.8.6.

(1) We have seen that the determinant of a matrix is unchanged under a
unitary change of basis. Argue now that

detΩ = product of eigenvalues of Ω =

n∏
i=1

ωi

for a Hermitian or unitary Ω.

(2) Using the invariance of the trace under the same transformation, show
that

TrΩ =

n∑
i=1

ωi

Solution.

(1) Suppose U is the unitary matrix that transforms Ω into a diagonal matrix
D with Ω’s eigenvalues ωi on its diagonal. Then

detΩ = det(U†ΩU) = detD =

n∏
i=1

ωi

(2) By using the same transformation, we have

TrΩ = Tr(U†ΩU) = TrD =

n∑
i=1

ωi

Exercise 1.8.7. By using the results on the trace and determinant from the
last problem, show that the eigenvalues of the matrix

Ω =

(
1 2
2 1

)
are 3 and −1. Verify this by explicit computation. Note that the Hermitian
nature of the matrix is an essential ingredient.
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Solution. According to Exercise 1.8.6, we have{
ω1 × ω2 = detΩ = 1× 1− 2× 2 = −3

ω1 + ω2 = 1 + 1 = 2

Solving the equation, we get {
ω1 = −1

ω2 = 3

For verification, we can calculate the characteristic equation

det(Ω− ωI) =
∣∣∣∣1− ω 2

2 1− ω

∣∣∣∣ = (1− ω)2 − 4 = (1− ω + 2)(1− ω − 2) = 0

We can get the eigenvalues {
ω1 = −1

ω2 = 3

Exercise 1.8.8. Consider Hermitian matrices M1,M2,M3,M4 that obey

M iM j +M jM i = 2δijI, i, j = 1, . . . , 4

(1) Show that the eigenvalues of M i are ±1. (Hint: go to the eigenbasis of
M i, and use the equation for i = j.)

(2) By considering the relation

M iM i = −M jM i for i ̸= j

show that M i are traceless. [Hint: Tr(ACB) = Tr(CBA).]

(3) Show that they cannot be odd-dimensional matrices.

Solution.

(1) Start with equation
M iM j +M jM i = 2δijI

Take i = j, we get
M iM i = I

Apply M iM i to eigenvector |ω⟩ of M i, we have

M iM i|ω⟩ =M i(ω|ω⟩) = ω2|ω⟩
M iM i|ω⟩ = I|ω⟩ = |ω⟩

Therefore,
ω2 = 1

ω = ±1

(2) From the relation

M iM j = −M jM i

M jM iM j = −M jM jM i = −M i
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We can take the trace of M i to get

TrM i = Tr(−M jM iM j)

= −Tr(M jM iM j)

= −Tr(M iM jM j)

= −Tr(M iI)
= −Tr(M i)

= 0

M i is traceless.

(3) According to 1.8.6,

TrM i =

n∑
k=1

ωk

where n is the dimension of the matrix. Since ωk = ±1, TrM i can be zero
only if n is even1.

Exercise 1.8.9. A collection of masses mα, located at rα and rotating with
angular velocity ω around a common axis has an angular momentum

l =
∑
α

mα (rα × vα)

where vα = ω × rα is the velocity of mα. By using the identity

A× (B×C) = B(A ·C)−C(A ·B)

show that each Cartesian component li of l is given by

li =
∑
j

Mijωj

where
Mij =

∑
α

mα

[
r2αδij − (rα)i (rα)j

]
or in Dirac notation

|l⟩ =M |ω⟩

(1) Will the angular momentum and angular velocity always be parallel?

(2) Show that the moment of inertia matrix Mij is Hermitian.

(3) Argue now that there exist three directions for ω such that l and ω will
be parallel. How are these directions to be found?

(4) Consider the moment of inertia matrix of a sphere. Due to the complete
symmetry of the sphere, it is clear that every direction is its eigendirection
for rotation. What does this say about the three eigenvalues of the matrix
M?

1The sum of an odd number of odd numbers is still odd, and cannot be zero.
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Solution. Start from the angular momentum

l =
∑
α

mαrα × (ω × rα)

=
∑
α

mα[ω(rα · rα)− rα(rα · ω)]

=
∑
α

mα[ω r
2
α − rα(rα · ω)]

Writing in components, we get

li =
∑
α

mα[ωi r
2
α − (rα)i (rα · ω)]

=
∑
α

mα[ωi r
2
α − (rα)i

∑
j

(rα)jωj ]

=
∑
α

mα[
∑
j

δijωj r
2
α − (rα)i

∑
j

(rα)jωj ]

=
∑
j

∑
α

mα[r
2
α δij − (rα)i (rα)j ]ωj

≡
∑
j

Mijωj

where Mij ≡
∑

αmα[r
2
α δij − (rα)i (rα)j ]. Or in Dirac notation,

|l⟩ =M |ω⟩

(1) No. The angular momentum and angular velocity are not parallel unless
|ω⟩ is an eigenvector of M .

(2) M⋆
ji = (

∑
αmα[r

2
α δji−(rα)j (rα)i])

⋆ =
∑

αmα[r
2
α δij−(rα)i (rα)j ] =Mij .

(3) Since M is Hermitian, we can always find three eigenvectors which are
orthogonal to each other by solving the eigen-problem M |ω⟩ = ω|ω⟩. And
these three eigenvectors denote the three directions for ω we want to find
in the 3-dimensional Euclidean space.

(4) The complete symmetry of sphere means all directions are equivalent
eigendirections. Therefore, the eigenvalues are degenerate.

Exercise 1.8.10. By considering the commutator, show that the following
Hermitian matrices may be simultaneously diagonalized. Find the eigenvectors
common to both and verify that under a unitary transformation to this basis,
both matrices are diagonalized.

Ω =

1 0 1
0 0 0
1 0 1

 , Λ =

2 1 1
1 0 −1
1 −1 2


Since Ω is degenerate and Λ is not, you must be prudent in deciding which
matrix dictates the choice of basis.
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Solution. Since the two Hermitian matrices commute

[Ω,Λ] = ΩΛ− ΛΩ

=

1 0 1
0 0 0
1 0 1

2 1 1
1 0 −1
1 −1 2

−

2 1 1
1 0 −1
1 −1 2

1 0 1
0 0 0
1 0 1


=

3 0 3
0 0 0
3 0 3

−

3 0 3
0 0 0
3 0 3


= 0

They can be diagonalized simultaneously. We choose Λ’s characteristic equation

det(Λ− λI) =

∣∣∣∣∣∣
2− λ 1 1
1 −λ −1
1 −1 2− λ

∣∣∣∣∣∣ = (λ+ 1)(2− λ)(λ− 3) = 0

The eigenvalues are
λ = −1, 2, 3

Then the eigenvectors corresponding the eigenvalues are

λ = −1 :

3 1 1
1 1 −1
1 −1 3

x1x2
x3

 = 0 ⇒ |λ = −1⟩ = 1√
6

 1
−2
−1


λ = 2 :

0 1 1
1 −2 −1
1 −1 0

x1x2
x3

 = 0 ⇒ |λ = 2⟩ = 1√
3

 1
1
−1


λ = 3 :

−1 1 1
1 −3 −1
1 −1 −1

x1x2
x3

 = 0 ⇒ |λ = 3⟩ = 1√
2

1
0
1


Then the matrix of eigenvectors of Λ is

U =


1√
6

1√
3

1√
2

− 2√
6

1√
3

0

− 1√
6

− 1√
3

1√
2


To verify Ω and Λ are simultanelously diagonalized:

U†ΩU =


1√
6

− 2√
6

− 1√
6

1√
3

1√
3

− 1√
3

1√
2

0 1√
2


1 0 1
0 0 0
1 0 1




1√
6

1√
3

1√
2

− 2√
6

1√
3

0

− 1√
6

− 1√
3

1√
2


=

 0 0 0
0 0 0√
2 0

√
2




1√
6

1√
3

1√
2

− 2√
6

1√
3

0

− 1√
6

− 1√
3

1√
2


=

0 0 0
0 0 0
0 0 2


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U †ΛU =


1√
6

− 2√
6

− 1√
6

1√
3

1√
3

− 1√
3

1√
2

0 1√
2


2 1 1
1 0 −1
1 −1 2




1√
6

1√
3

1√
2

− 2√
6

1√
3

0

− 1√
6

− 1√
3

1√
2


=

− 1√
6

2√
6

1√
6

2√
3

2√
3

− 2√
3

3√
2

0 3√
2




1√
6

1√
3

1√
2

− 2√
6

1√
3

0

− 1√
6

− 1√
3

1√
2


=

−1 0 0
0 2 0
0 0 3


Exercise 1.8.11. Consider the coupled mass problem discussed above.

(1) Given that the initial state is |1⟩, in which the first mass is displaced
by unity and the second is left alone, calculate |1(t)⟩ by following the
algorithm.

(2) Compare your result with that following from Eq. (1.8.39).

Solution.

(1) Equation of motion

d2

dt2

(
x1
x2

)
=

(
− 2k

m
k
m

k
m − 2k

m

)(
x1
x2

)
Set ∣∣∣∣− 2k

m + ω2 k
m

k
m − 2k

m + ω2

∣∣∣∣ = 0

we have

ω1 =

√
3k

m
ω2 =

√
k

m

The corresponding eigenvectors are

|ω1⟩ =
1√
2

(
1
−1

)
|ω2⟩ =

1√
2

(
1
1

)
Then the matrix of eigenvectors is

Λ ≡

(
1√
2

1√
2

− 1√
2

1√
2

)

It can diagonalize the original matrix

Λ†
(
− 2k

m
k
m

k
m − 2k

m

)
Λ =

(
−ω2

1 0
0 −ω2

2

)
In eigenbasis,(

ẍI
ẍII

)
=

(
−ω2

1 0
0 −ω2

2

)(
xI
xII

)
⇒

{
xI(t) = xI(0) cosω1t

xII(t) = xII(0) cosω2t
(⋆)
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In this problem,
|1⟩ =

(
x1(0)
x2(0)

)
=

(
1
0

)
We first transform it into eigenbasis(

xI(t)
xII(t)

)
= Λ†

(
x1(0)
x2(0)

)
=

(
1√
2

− 1√
2

1√
2

1√
2

)(
1
0

)
=

(
1√
2
1√
2

)

In the eigenbasis, the state evolves according to (⋆).(
xI(t)
xII(t)

)
=

(
1√
2
cosω1t

1√
2
cosω2t

)

Then we transform it back to the original basis:

|1(t)⟩ =
(
x1(t)
x2(t)

)
= Λ

(
xI(t)
xII(t)

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
1√
2
cosω1t

1√
2
cosω2t

)

=

 1
2 cos

√
3k
m t+

1
2 cos

√
k
m t

− 1
2 cos

√
3k
m t+

1
2 cos

√
k
m t



(2) By subsitituting
(
x1(0)
x2(0)

)
=

(
1
0

)
in equation (1.8.39), we can get the

same solution: (
x1(t)
x2(t)

)
=

 1
2 cos

√
3k
m t+

1
2 cos

√
k
m t

− 1
2 cos

√
3k
m t+

1
2 cos

√
k
m t


Exercise 1.8.12. Consider once again the problem discussed in the previous
example.

(1) Assuming that
|ẍ⟩ = Ω|x⟩

has a solution
|x(t)⟩ = U(t)|x(0)⟩

find the differential equation satisfied by U(t). Use the fact that |x(0)⟩ is
arbitrary.

(2) Assuming (as is the case) that Ω and U can be simultaneously diagonal-
ized, solve for the elements of the matrix U in this common basis and
regain Eq. (1.8.43). Assume |ẋ(0)⟩ = 0.

Solution.
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(1) Assuming that
|ẍ(t)⟩ = Ω|x(t)⟩

has a solution
|x(t)⟩ = U(t)|x(0)⟩

Then we can get

d2

dt2
U(t)|x(0)⟩ = ΩU(t)|x(0)⟩(

d2

dt2
− Ω

)
U(t)|x(0)⟩ = 0

Since |x(0)⟩ is arbitrary, we get the differential equation

d2

dt2
U(t)− ΩU(t) = 0

(2) From Exercise 1.8.11, we know the Λ =

(
1√
2

1√
2

− 1√
2

1√
2

)
can diagonalize

Ω, and therefore, it can also diagonalize U .
In this common basis, we have(

Ü11(t) 0

0 Ü22(t)

)
−
(
−ω2

1 0
0 −ω2

2

)(
U11(t) 0

0 U22(t)

)
= 0

⇒

{
Ü11(t) + ω2

1U11(t) = 0

Ü22(t) + ω2
2U22(t) = 0

⇒

{
U11 = A1 cosω1t+B1 sinω1t

U22 = A2 cosω2t+B2 sinω2t

Then

|ẋ(0)⟩ = d

dt
[U(t)|x(0)⟩]

∣∣∣∣
t=0

=

(
d

dt
U(t)

)∣∣∣∣
t=0

|x(0)⟩ = 0

Since |x(0)⟩ is arbitrary, we have

d

dt
U(t)

∣∣∣∣
t=0

= 0

which means
U̇11(0) = U̇22(0) = 0

B1 = B2 = 0

To satisfy that U is unitary, we have

A1 = A2 = 1

Therefore,
U =

(
cosω1t 0

0 cosω2t

)
which is the same as equation (1.8.43).
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1.9 Functions of Operators and Related Con-
cepts

Exercise 1.9.1. We know that the series

f(x) =

∞∑
n=0

xn

may be equated to the function f(x) = (1 − x)−1 if |x| < 1. By going to the
eigenbasis, examine when the q number power series

f(Ω) =

∞∑
n=0

Ωn

of a Hermitian operator Ω may be identified with (1− Ω)−1.

Solution. In the eigenbasis,

Ω =


ω1

ω2

. . .
ωm


where ωi are eigenvalues.

f(Ω) =

∞∑
n=0

Ωn =


∞∑

n=0
ωn
1

. . .
∞∑

n=0
ωn
m

 =


1

1−ω1

. . .
1

1−ωm

 =
1

1− Ω

The third equality holds if and only if |ωi| < 1 for i = 1, . . . ,m. Therefore, f(Ω)
can be defined as 1

1−Ω if and only if the absolute value of each of Ω’s eigenvalues
is less than 1.

Exercise 1.9.2. If H is a Hermitian operator, show that U = eiH is unitary.
(Notice the analogy with c numbers: if θ is real, u = eiθ is a number of unit
modulus.)

Solution. Since H is Hermitian, it satisfies

H† = H

We can compute
U† = (eiH)† = e−iH†

= e−iH

Then2

U†U = e−iHeiH = e−iH+iH = 1

Therefore U is unitary.
2The second equality holds only for commuting operators.
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Exercise 1.9.3. For the case above, show that detU = ei TrH .

Solution. In the eigenbasis of H,

U = eiH =


∞∑

n=0

(iϵ1)
n

n!

. . .
∞∑

n=0

(iϵm)n

n!

 =

eiϵ1

. . .
eiϵm



where ϵ1, . . . , ϵm are eigenvalues of H, i.e.

H =

ϵ1 . . .
ϵm


Therefore,

detU =

m∏
i=1

eiϵi = e
i

m∑
i=1

ϵi
= ei TrH

1.10 Generalization to Infinite Dimensions
Exercise 1.10.1. Show that δ(ax) = δ(x)/|a|. [Consider

∫
δ(ax) d(ax). Re-

member that δ(x) = δ(−x).]

Solution. Since δ(x) = δ(−x), we have

δ(ax) = δ(|a|x)

Therefore,∫ ∞

−∞
δ(ax)dx =

∫ ∞

−∞
δ(|a|x)dx =

∫ ∞

−∞
δ(|a|x) · 1

|a|
d(|a|x)

=
1

|a|

∫ ∞

−∞
δ(|a|x) d(|a|x) (change |a|x to x)

=
1

|a|

∫ ∞

−∞
δ(x) dx

Thus,
δ(ax) = δ(x)/|a|

Exercise 1.10.2. Show that

δ(f(x)) =
∑
i

δ (xi − x)

|df/dxi|

where xi are the zeros of f(x). Hint: Where does δ(f(x)) blow up? Expand
f(x) near such points in a Taylor series, keeping the first nonzero term.
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Solution. Expand f(x) around xi, where f(xi) = 0:

f(x) = f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 + · · ·

= 0 + f ′(xi)(x− xi) +O[(x− xi)
2]

≈ f ′(xi)(x− xi)

Introduce a test function g(x),3∫ ∞

−∞
g(x)δ(f(x))dx =

∑
i

∫ xi+ϵ

xi−ϵ

g(x) δ(f(x)) dx

=
∑
i

∫ xi+ϵ

xi−ϵ

g(x) δ

(
df

dx

∣∣∣∣
x=xi

(x− xi)

)
dx

=
∑
i

∫ xi+ϵ

xi−ϵ

g(x)
δ(x− xi)∣∣∣∣∣dfdx
∣∣∣∣
x=xi

∣∣∣∣∣
dx

Therefore,
δ(f(x)) =

∑
i

δ(x− xi)

|f ′(xi)|

Exercise 1.10.3. Consider the theta function θ(x−x′) which vanishes if x−x′
is negative and equals 1 if x−x′ is positive. Show that δ(x−x′) = d

dxθ(x−x′).

Solution. Introduce a test function4 g(x), we have∫ ∞

−∞
g(x)

d

dx
θ(x− x′)dx =

∫ ∞

−∞
dθ(x− x′)

= θ(x− x′)g(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
θ(x− x′)g′(x)dx

= 1 · g(∞)− 0 · g(−∞)−∞∞
0 g

′(x)dx

= g(∞)− [g(∞)− g(0)]

= g(0)

=

∫ ∞

−∞
g(x)δ(x)dx

Therefore,
d

dx
θ(x− x′) = δ(x)

Exercise 1.10.4. A string is displaced as follows at t = 0 :

ψ(x, 0) =
2xh

L
, 0 ⩽ x ⩽ L

2

=
2h

L
(L− x),

L

2
⩽ x ⩽ L

3We use the Exercise 1.10.1 at the last equality.
4g(−∞) and g(∞) are finite
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Show that

ψ(x, t) =

∞∑
m=1

sin
(mπx

L

)
cosωmt ·

(
8h

π2m2

)
sin
(πm

2

)
Solution. We start from equation (1.10.55)

|ψ(t)⟩ =
∞∑

m=1

|m⟩⟨m | ψ(0)⟩ cosωmt, ωm =
mπ

L

Then
ψ(x, t) = ⟨x | ψ(t)⟩ =

∞∑
in=1

⟨x | m⟩⟨m | ψ(0)⟩ cosωmt

From equation (1.10.55), we have

⟨x | m⟩ = ψm(x) =

(
2

L

) 1
2

sin
mπx

L

Therefore,

⟨m | ψ(0)⟩ =
∫ L

0

(
2

L

) 1
2

sin
mπx

L
· ψ(x, 0) dx

=

(
2

L

) 1
2

[∫ L
2

0

2xh

L
sin

mπx

L
dx+

∫ L

L
2

2h

L
(L− x) sin

mπx

L
dx

]
where∫ L

2

0

2xh

L
sin

mπx

L
dx = −2h

L
· L

mπ

∫ L
2

0

xd cos
mπx

L

= − 2h

L
· L

mπ
x cos

mπx

L

∣∣∣∣L2
0

+
2h

L
· L

mπ

∫ L
2

0

cos
mπx

L
dx

= −2h

2
· L
2
cos

mπ

2
+

2h

L

(
L

mπ

)2

sin
mπx

L

∣∣∣∣∣
L
2

0

= − hL

mπ
cos

mπ

2
+

2h

L

(
L

mπ

)2

sin
mπ

2∫ L

L
2

2h

L
(L− x) sin

mπx

L
dx =

∫ L

L
2

2h

L
· L sin

mπx

L
dx−

∫ L

L
2

2hx

L
sin

mπx

L
dx

= − 2h · L

mπ
cos

mπx

L

∣∣∣∣L
L
2

+
2h

L
· L

mπ

∫ L

L
2

xd cos
mπx

L

=
2hL

mπ
cos

mπ

2
− 2hL

mπ
cosmπ +

2h

L
· L

mπ
x cos

mπx

L

∣∣∣∣L
L
2

− 2h

mπ

∫ L

L
2

cos
mπ

L
dx

=
2hL

mπ
cos

mπ

2 �������
− 2hL

2mπ
cosmπ +������2hL

2nπ
cosmπ − hL

mπ
cos

mπ

2
− 2h

mπ
· L

mπ
sin

mπx

L

∣∣∣∣L
L
2

=
hL

mπ
cos

mπ

2
− 2h

L

(
L

mπ

)2

sinmπ︸ ︷︷ ︸
=0

+
2h

L

(
L

mπ

)2

sin
mπ

2
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Then

⟨m | ψ(0)⟩ =
(
2

L

) 1
2 4h

L

(
L

mπ

)2

sin
mπ

2

Therefore,

ψ(x, t) =

∞∑
m=1

(
2

L

) 1
2

sin
mπx

L
·
(
2

L

) 1
2

· 4h
L

(
L

mπ

)2

sin
mπ

2
cosωmt

=

∞∑
m=1

sin
(mπx

L

)
cosωmt ·

(
8h

π2m2

)
sin
(πm

2

)



Chapter 2

Review of Classical
Mechanics

2.1 The Principle of Least Action and Lagrangian
Mechanics

Exercise 2.1.1. Consider the following system, called a harmonic oscillator.
The block has a mass m and lies on a frictionless surface. The spring has a force
constant k. Write the Lagrangian and get the equation of motion.

Solution. The kinetic energy and potential energy are

T =
1

2
mẋ2

V =
1

2
kx2

Then the Lagrangian is

L = T − V =
1

2
mẋ2 − 1

2
kx2

We can compute
∂L

∂ẋ
= mẋ

∂L

∂x
= −kx

Therefore, the Euler-Lagrange equation is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

The equation of motion is
mẍ+ kx = 0

Exercise 2.1.2. Do the same for the coupled-mass problem discussed at the
end of Section 1.8. Compare the equations of motion with Eqs. (1.8.24) and
(1.8.25).

31
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Solution. The kinetic energy and potential energy of the system are

T =
1

2
mẋ21 +

1

2
mẋ22

V =
1

2
kx2 +

1

2
k(x2 − x1)

2 +
1

2
kx22

Then the Lagrangian is

L = T − V =
1

2
m(ẋ21 + ẋ22)− k(x21 − x1x2 + x22)

• The Euler-Lagrange equation of 1:
∂L

∂ẋ1
= mẋ1

∂L

∂x1
= −2kx1 + kx2

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0

We get equation of motion

mẍ1 + 2kx1 − kx2 = 0

ẍ1 = −2k

m
x1 +

k

m
x2 (2.1)

• The Euler-Lagrange equation of 2:
∂L

∂ẋ2
= mẋ2

∂L

∂x1
= kx1 − 2kx2

d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= 0

We get equation of motion

mẍ2 − kx1 + 2kx2 = 0

ẍ2 =
k

m
x1 −

2k

m
x2 (2.2)

(2.1) and (2.2) are the same as Eqs. (1.8.24) and (1.8.25).

Exercise 2.1.3. A particle of mass m moves in three dimensions under a po-
tential V (r, θ, ϕ) = V (r). Write its L and find the equations of motions.

Solution. The kinetic energy and potential energy are

T =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)

V = V (r)

Then the Lagrangian is

L = T − V =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)− V (r)
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• Euler-Lagrange equation of r:

∂L

∂ṙ
= mṙ,

∂L

∂r
= mrθ̇2 +mr sin2 θ ϕ̇2 − ∂V (r)

r

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0

The equation of motion is

mr̈ −mrθ̇2 −mr sin2 θ ϕ̇2 +
∂V (r)

∂r
= 0

• Euler-Lagrange equation of θ:

∂L

∂θ̇
= mr2θ̇,

∂θ

∂r
= mr2 sin θ cos θ ϕ̇2

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

The equation of motion is

mr2θ̈ + 2mrṙθ̇ −mr2 sin θ cos θ ϕ̇2 = 0

• Euler-Lagrange equation of ϕ:

∂L

∂ϕ̇
= mr2 sin2 θϕ̇,

∂L

∂ϕ
= 0

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0

The equation of motion is

d

dt
(mr2 sin2 θ ϕ̇) = 0

mr2 sin2 θ ϕ̇ = l

ϕ̇ =
l

mr2 sin2 θ

where l is a contant.

2.2 The Electromagnetic Lagrangian

2.3 The Two Body Problem
Exercise 2.3.1. Derive Eq. (2.3.6) from (2.3.5) by changing variables.

Solution. Since

r1 = rCM +
m2r

m1 +m2
ṙ1 = ṙCM +

m2ṙ

m1 +m2

r2 = rCM − m1r

m1 +m2
ṙ2 = ṙCM − m1ṙ

m1 +m2
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The Lagrangian becomes

L =
1

2
m1 |ṙ1|2 +

1

2
m2 |ṙ2|2 − V (r1 − r2)

=
1

2
m1

(
ṙCM +

m2ṙ

m1 +m2

)2

+
1

2
m2

(
ṙCM − m1ṙ

m1 +m2

)2

− V (r)

=
1

2
m1|ṙCM|2 + 1

2

m1m
2
2

(m1 +m2)
2 |ṙ|

2 +
1

2
m2|ṙCM|2 + 1

2

m2m
2
1

(m1 +m2)
2 |ṙ|

2 − V (r)

=
1

2
(m1 +m2)|ṙCM|2 + 1

2

m1m2(m1 +m2)

(m1 +m2)2
|ṙ|2 − V (r)

=
1

2
(m1 +m2)|ṙCM|2 + 1

2

m1m2

m1 +m2
|ṙ|2 − V (r)

2.4 How Smart Is a Particle?

2.5 The Hamiltonian Formalism
Exercise 2.5.1. Show that if T =

∑
i

∑
j

Tij(q)q̇iq̇j , where q̇’s are generalized

velocities,
∑
i

piq̇i = 2T .

Solution.
ps =

∂T

∂q̇s

=
∑
i

∑
j

Tij(q)q̇iδjs +
∑
i

∑
j

Tij(q)δisq̇j

=
∑
i

Tis(q)q̇i +
∑
j

Tsj(q)q̇j

Therefore, ∑
s

psq̇s =
∑
i

Tis(q)q̇iq̇s +
∑
j

Tsj(q)q̇j q̇s

= T + T

= 2T

Exercise 2.5.2. Using the conservation of energy, show that the trajectories in
phase space for the oscillator are ellipses of the form (x/a)2+(p/b)2 = 1, where
a2 = 2E/k and b2 = 2mE.

Solution. The Lagrangian is

L =
1

2
mẋ2 − 1

2
kx2

So the momentum is
p =

∂L

∂ẋ
= mẋ

Hamiltonian is
H = pẋ− L =

p2

2m
+

1

2
kx2



CHAPTER 2. REVIEW OF CLASSICAL MECHANICS 35

Since L is not an explicit function of t, H is conservative. Set H = E, where
E is a constant, we have

1

2
kx2 +

p2

2m
= E

If we denote a2 = 2E/k and b2 = 2mE, we have(x
a

)2
+
(p
b

)2
= 1

Exercise 2.5.3. Solve Exercise 2.1.2 using the Hamiltonian formalism.
Solution. Start from Lagrangian of the system

L =
1

2
m(ẋ21 + ẋ22)− k(x21 + x22 − x1x2)

Then the momenta are

p1 =
∂L

∂ẋ1
= mẋ1 ⇒ ẋ1 =

p1
m

p2 =
∂L

∂ẋ2
= mẋ2 ⇒ ẋ2 =

p2
m

Then the Hamiltonian of the system is
H = p1ẋ1 + p2ẋ2 − L

=
p21
m

+
p22
m

− p21
2m

− p22
2m

+ k(x21 + x22 − x1x2)

=
p21
2m

+
p22
2m

+ k(x21 + x22 − x1x2)

• Hamilton’s canonical equations of 1:
ẋ1 =

∂H

∂p1
=
p1
m

ṗ1 = −∂H

∂x1
= −2kx1 + kx2

From the first equation, we know p1 = mẋ1. Take the time derivative on
the both side, we get ṗ1 = mẍ1. Substitute it into the second equation,
we get

mẍ1 = −2kx1 + kx2

ẍ1 = −2k

m
x1 +

k

m
x2

• Hamilton’s canonical equations of 2:
ẋ2 =

∂H

∂p2
=
p2
m

ṗ2 = −∂H

∂x2
= −2kx2 + kx1

From the first equation, we know p2 = mẋ2. Take the time derivative on
the both side, we get ṗ2 = mẍ2. Substitute it into the second equation,
we get

mẍ2 = −2kx2 + kx1

ẍ2 =
k

m
x1 −

2k

m
x2
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Exercise 2.5.4. Show that H corresponding to L in Eq. (2.3.6) is H =

|pCM|2 /2M + |p|2/ 2µ + V (r), where M is the total mass, µ is the reduced
mass, pCM and p are the momenta conjugate to rCM and r, respectively.

Solution. Start from Lagrangian

L =
1

2
(m1 +m2)|ṙCM|2 + 1

2

m1m2

m1 +m2
|ṙ|2 − V (r)

=
1

2
M |ṙCM|2 + 1

2
µ|ṙ|2 − V (r)

where total mass M = m1 + m2 and reduced mass µ = m1m2

m1+m2
. Then the

momenta satisfy

|pCM| = ∂L

∂|ṙCM|
=M |ṙCM| ⇒ |ṙCM| = |pCM|

M

|p| = ∂L

∂|ṙ|
= µ|ṙ| ⇒ |ṙ| = |p|

µ

Therefore the Hamiltonian is

H = pCM · ṙCM + p · ṙ− L

= |pCM||ṙCM|+ |p||ṙ| − 1

2
M |ṙCM|2 − 1

2
µ|ṙ|2 + V (r)

=
|pCM|2

M
+

|p|2

µ
− 1

2
M

|pCM|2

M2
− 1

2
µ
|p|2

µ2
+ V (r)

=
|pCM|2

2M
+

|p|2

2µ
+ V (r)

2.6 The Electromagnetic Force in the Hamilto-
nian Scheme

2.7 Cyclic Coordinates, Poisson Brackets, and
Canonical Transformations

Exercise 2.7.1. Show that

{ω, λ} = −{λ, ω}
{ω, λ+ σ} = {ω, λ}+ {ω, σ}
{ω, λσ} = {ω, λ}σ + λ{ω, σ}

Note the similarity between the above and Eqs. (1.5.10) and (1.5.11) for com-
mutators.

Solution.

{ω, λ} =
∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
= −

∑
i

(
∂λ

∂qi

∂ω

∂pi
− ∂λ

∂pi

∂ω

∂qi

)
= −{λ, ω}
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{ω, λ+ σ} =
∑
i

(
∂ω

∂qi
· ∂(λ+ σ)

∂pi
− ∂ω

∂pi
· ∂(λ+ σ)

∂qi

)
=
∑
i

[
∂ω

∂qi
·
(
∂λ

∂pi
+
∂σ

∂pi

)
− ∂ω

∂pi
·
(
∂λ

∂qi
+
∂σ

∂qi

)]
=
∑
i

[(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
+

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)]
=
∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
+
∑
i

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
= {ω, λ}+ {ω, σ}

{ω, λσ} =
∑
i

[
∂ω

∂qi

∂(λσ)

∂pi
− ∂ω

∂pi
· ∂(λσ)
∂qi

]
=
∑
i

[
λ
∂ω

∂qi

∂σ

∂pi
+
∂ω

∂qi

∂λ

∂pi
σ − λ

∂ω

∂pi

∂σ

∂qi
− ∂ω

∂pi

∂λ

∂qi
σ

]
= λ

∑
i

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
+
∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
σ

= λ{ω, σ}+ {ω, λ}σ.

Exercise 2.7.2. (i) Verify Eqs. (2.7.4) and (2.7.5). (ii) Consider a problem in
two dimensions given by H = p2x+p

2
y +ax

2+ by2. Argue that if a = b, {lz,H }
must vanish. Verify by explicit computation.

Solution.

(i)

{qi, qj} :=
∑
k

(
∂qi
∂qk

· ∂qj
∂pk

− ∂qi
∂pk

· ∂qj
∂qk

)
=
∑
k

(
∂qi
∂qk

· 0− 0 · ∂qj
∂qk

)
= 0

{pi, pj} :=
∑
k

(
∂pi
∂qk

· ∂pj
∂pk

− ∂pi
∂pk

· ∂pj
∂qk

)
=
∑
k

(
0 · ∂pj

∂pk
− ∂pi
∂pk

· 0
)

= 0

{qi, pj} :=
∑
k

(
∂qi
∂qk

· ∂pj
∂pk

− ∂qi
∂pk

· ∂pj
∂qk

)
=
∑
k

(δikδjk − 0 · 0) = δij

and

{qi,H } :=
∑
k

(
∂qi
∂qk

· ∂H

∂pk
− ∂qi
∂pk

· ∂H

∂qk

)
=
∑
k

(
δik · ∂H

∂pk
− 0 · ∂H

∂qk

)
=
∂H

∂pi
= q̇i

{pi,H } :=
∑
k

(
∂pi
∂qk

· ∂H

∂pk
− ∂pi
∂pk

· ∂H

∂qk

)
=
∑
k

(
0 · ∂H

∂pk
− δik · ∂H

∂qk

)
= −∂H

∂qi
= ṗi

(ii) The Hamiltonian given is H = p2x + p2y + ax2 + by2. If a = b, H has a
symmetry under simultaneous rotations in the x − y and px − py planes,
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under which lz (the generator) is conserved. Therefore, {lz,H } = 0. We
check this as follows:

{lz,H } =
∑
k

(
∂lz
∂qk

· ∂H

∂pk
− ∂lz
∂pk

· ∂H

∂qk

)
=
∂lz
∂x

· ∂H

∂px
+
∂lz
∂y

· ∂H

∂py
− ∂lz
∂px

· ∂H

∂x
− ∂lz
∂py

· ∂H

∂y

But

∂H

∂pk
= 2pk,

∂lz
∂pk

=
∂ (xpy − ypx)

∂pk
=

(
∂lz
∂px

,
∂lz
∂py

)
= (−y, x),

∂H

∂xk
=

(
∂H

∂x
,
∂H

∂y

)
= (2ax, 2by),

∂lz
∂qk

=

(
∂lz
∂x

,
∂lz
∂y

)
= (py,−px)

So

{lz,H } = py · 2px + (−px) · 2py − (−y) · 2ax− x · 2by = 2xy(a− b)

which vanishes if a = b.

Exercise 2.7.3. Fill in the missing steps leading to Eq. (2.7.18) starting from
Eq. (2.7.14).

Solution. Consider the following transformations:

q̄i = q̄i(q, p)

p̄i = p̄i(q, p)

If this transformation is canonical, then the variables q̄i and p̄i satisfy Hamilton’s
equation:

˙̄qi =
∂H

∂p̄i

˙̄pi = −∂H

∂q̄i

If we write Hamiltonian H as a function of new variables, we can get partial
derivatives

∂H (q̄, p̄)

∂pi
=
∑
k

(
∂H

∂q̄k

∂q̄k
∂pi

+
∂H

∂p̄k

∂p̄k
∂pi

)
∂H (q̄, p̄)

∂qi
=
∑
k

(
∂H

∂q̄k

∂q̄k
∂qi

+
∂H

∂p̄k

∂p̄k
∂qi

)
The time derivative of any function ω can be written as a Poisson bracket with
Hamiltonian H :

ω̇ = {ω,H }
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Therefore, for transformed velocities, we have

˙̄qj = {q̄j ,H }

=
∑
i

(
∂q̄j
∂qi

∂H

∂pi
− ∂q̄j
∂pi

∂H

∂qi

)
=
∑
i

∑
k

[
∂q̄j
∂qi

(
∂H

∂q̄k

∂q̄k
∂pi

+
∂H

∂p̄k

∂p̄k
∂pi

)
− ∂q̄j
∂pi

(
∂H

∂q̄k

∂q̄k
∂qi

+
∂H

∂p̄k

∂p̄k
∂qi

)]
=
∑
k

∂H

∂q̄k

∑
i

(
∂q̄j
∂qi

∂q̄k
∂pi

− ∂q̄j
∂pi

∂q̄k
∂qi

)
+
∑
k

∂H

∂p̄k

∑
i

(
∂q̄j
∂qi

∂p̄k
∂pi

− ∂q̄j
∂pi

∂p̄k
∂qi

)
=
∑
k

∂H

∂q̄k
{q̄j , q̄k}+

∑
k

∂H

∂p̄k
{q̄j , p̄k}

In order to satisfy Hamilton’s equation, we must have

{q̄j , q̄k} = 0

{q̄j , p̄k} = δjk

We could do the same calculation for the time derivative of transform momentum
˙̄pj = {p̄j ,H }

=
∑
i

(
∂p̄j
∂qi

∂H

∂pi
− ∂p̄j
∂pi

∂H

∂qi

)
=
∑
i

∑
k

[
∂p̄j
∂qi

(
∂H

∂q̄k

∂q̄k
∂pi

+
∂H

∂p̄k

∂p̄k
∂pi

)
− ∂p̄j
∂pi

(
∂H

∂q̄k

∂q̄k
∂qi

+
∂H

∂p̄k

∂p̄k
∂qi

)]
=
∑
k

∂H

∂q̄k

∑
i

(
∂p̄j
∂qi

∂q̄k
∂pi

− ∂p̄j
∂pi

∂q̄k
∂qi

)
+
∑
k

∂H

∂p̄k

∑
i

(
∂p̄j
∂qi

∂p̄k
∂pi

− ∂p̄j
∂pi

∂p̄k
∂qi

)
=
∑
k

∂H

∂q̄k
{p̄j , q̄k}+

∑
k

∂H

∂p̄k
{p̄j , p̄k}

In order to satisfy Hamilton’s equation, we must have

{p̄j , q̄k} = −δjk
{p̄j , p̄k} = 0

Thus, we can conclude that in order for the transformation to be canonical, the
conditions are

{q̄j , q̄k} = {p̄j , p̄k} = 0

{q̄j , p̄k} = δjk

Exercise 2.7.4. Verify that the change to a rotated frame

x̄ = x cos θ − y sin θ

ȳ = x sin θ + y cos θ

p̄x = px cos θ − py sin θ

p̄y = px sin θ + py cos θ

is a canonical transformation.
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Solution. To show this is a canonical transformation, we must evaluate the
Poisson brackets. Before computing Poisson brackets, we can first compute
non-vanishing derivatives

∂x̄

∂x
= cos θ

∂x̄

∂y
= − sin θ

∂ȳ

∂x
= sin θ

∂ȳ

∂y
= cos θ

∂p̄x
∂px

= cos θ
∂p̄x
∂py

= − sin θ

∂p̄y
∂px

= sin θ
∂p̄y
∂py

= cos θ

where q1 = x, q2 = y and p1 = px, p2 = py.

{x̄, ȳ} =
∑
i

(
∂x̄

∂qi

∂ȳ

∂pi
− ∂x̄

∂pi

∂ȳ

∂qi

)
= 0

since neither coordinate depends on any momentum. Similarly,

{p̄x, p̄y} = 0

since Poisson bracket contains derivatives of p̄i with respect to qi and these are
all zero.

The remaining Poisson brackets are of the form {q̄i, p̄j}.

{x̄, p̄x} =
∑
i

(
∂x̄

∂qi

∂p̄x
∂pi

− ∂x̄

∂pi

∂p̄x
∂qi

)
=
∂x̄

∂x

∂p̄x
∂px

+
∂x̄

∂y

∂p̄x
∂py

= cos2 θ + sin2 θ

= 1

{x̄, p̄y} =
∑
i

(
∂x̄

∂qi

∂p̄y
∂pi

− ∂x̄

∂pi

∂p̄y
∂qi

)
=
∂x̄

∂x

∂p̄y
∂px

+
∂x̄

∂y

∂p̄y
∂py

= sin θ cos θ − sin θ cos θ

= 0
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Similarly,
{ȳ, p̄x} =

∑
i

(
∂ȳ

∂qi

∂p̄x
∂pi

− ∂ȳ

∂pi

∂p̄x
∂qi

)
=
∂ȳ

∂x

∂p̄x
∂px

+
∂ȳ

∂y

∂p̄x
∂py

= sin θ cos θ + cos θ(− sin θ)

= 0

{ȳ, p̄y} =
∑
i

(
∂ȳ

∂qi

∂p̄y
∂pi

− ∂ȳ

∂pi

∂p̄y
∂qi

)
=
∂ȳ

∂x

∂p̄y
∂px

+
∂ȳ

∂y

∂p̄y
∂py

= sin θ sin θ + cos θ cos θ

= 1

Therefore, the change of rotated frame is a canonical transformation.

Exercise 2.7.5. Show that the polar variables

ρ =
(
x2 + y2

)1/2
, ϕ = tan−1(y/x)

pρ = êρ · p =
xpx + ypy

(x2 + y2)
1/2

, pϕ = xpy − ypx (= lz)

are canonical. ( êρ is the unit vector in the radial direction.)

Solution. The non-vanishing derivatives are

∂ρ

∂x
=

x√
x2 + y2

∂ρ

∂y
=

y√
x2 + y2

∂ϕ

∂x
=

−y
x2 + y2

∂ϕ

∂y
=

x

x2 + y2

∂pρ
∂x

=
y2px − xypy
(x2 + y2)3/2

∂pρ
∂y

=
x2py − xypx
(x2 + y2)3/2

∂pρ
∂px

=
x√

x2 + y2
∂pρ
∂py

=
y√

x2 + y2

∂pϕ
∂x

= py
∂pϕ
∂y

= −px

∂pϕ
∂px

= −y ∂pϕ
∂py

= x

Now, let’s evaluate Poisson brackets

{ρ, ϕ} =
∑
i

(
∂ρ

∂qi

∂ϕ

∂pi
− ∂ρ

∂pi

∂ϕ

∂qi

)
= 0
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since coordinates don’t depend on the momenta.

{pρ, pϕ} =
∑
i

(
∂pρ
∂qi

∂pϕ
∂pi

− ∂pρ
∂pi

∂pϕ
∂qi

)
=
∂pρ
∂x

∂pϕ
∂px

− ∂pρ
∂px

∂pϕ
∂x

+
∂pρ
∂y

∂pϕ
∂py

− ∂pρ
∂py

∂pϕ
∂y

=
y2px − xypy
(x2 + y2)3/2

(−y)− x√
x2 + y2

py +
x2py − xypx
(x2 + y2)3/2

x− y√
x2 + y2

(−px)

=
−y3px + xy2py − (x3 + xy2)py + x3py − x2ypx + (x2y + y3)px

(x2 + y2)3/2

= 0

The remaining Poisson brackets are of the form {q̄i, p̄j}.

{ρ, pρ} =
∑
i

(
∂ρ

∂qi

∂pρ
∂pi

− ∂ρ

∂pi

∂pρ
∂qi

)
=
∂ρ

∂x

∂pρ
∂px

− ∂ρ

∂px

∂pρ
∂x

+
∂ρ

∂y

∂pρ
∂py

− ∂ρ

∂py

∂pρ
∂y

=
x2

x2 + y2
− 0 +

y2

x2 + y2
− 0

= 1

{ρ, pϕ} =
∑
i

(
∂ρ

∂qi

∂pϕ
∂pi

− ∂ρ

∂pi

∂pϕ
∂qi

)
=
∂ρ

∂x

∂pϕ
∂px

− ∂ρ

∂px

∂pϕ
∂x

+
∂ρ

∂y

∂pϕ
∂py

− ∂ρ

∂py

∂pϕ
∂y

= − xy√
x2 + y2

− 0 +
xy√
x2 + y2

− 0

= 0

{ϕ, pρ} =
∑
i

(
∂ϕ

∂qi

∂pρ
∂pi

− ∂ϕ

∂pi

∂pρ
∂qi

)
=
∂ϕ

∂x

∂pρ
∂px

− ∂ϕ

∂px

∂pρ
∂x

+
∂ϕ

∂y

∂pρ
∂py

− ∂ϕ

∂py

∂pρ
∂y

=
−y

x2 + y2
x√

x2 + y2
− 0 +

x

x2 + y2
y√

x2 + y2
− 0

= 0

{ϕ, pϕ} =
∑
i

(
∂ϕ

∂qi

∂pϕ
∂pi

− ∂ϕ

∂pi

∂pϕ
∂qi

)
=
∂ϕ

∂x

∂pϕ
∂px

− ∂ϕ

∂px

∂pϕ
∂x

+
∂ϕ

∂y

∂pϕ
∂py

− ∂ϕ

∂py

∂pϕ
∂y

=
−y

x2 + y2
(−y)− 0 +

x

x2 + y2
x− 0

= 1

Thus all the Poisson brackets are correct, so the transformation is canonical.



CHAPTER 2. REVIEW OF CLASSICAL MECHANICS 43

Exercise 2.7.6. Verify that the change from the variables r1, r2,p1,p2 to
rCM,pCM, r, and p is a canonical transformation. (See Exercise 2.5.4).

Solution. The transformation from the coordinates r1 and r2 of the masses m1

and m2 to relative position r and the position of the center of mass rCM are

r = r1 − r2

rCM =
m1r1 +m2r2

M

where M := m1 +m2 is the total mass. The conjugate momenta is the original
system are

pi = miṙi

The conjugate momenta transform according to

p = µṙ =
m2p1 −m1p2

M
pCM =M ṙCM = p1 + p2

where µ := m1m2

M is the reduced mass.
Now we calculate the Poisson brackets to check whether it is a canonical

transformation.
Note that the new coordinates depend only on the old coordinates, and

conversely, the new momenta depend only on the old momenta. Also notice
that ri depends only on the i components of r1 and r2, and pj depends only on
the j components of p1 and p2.

Since the Poisson brackets {q̄i, q̄j} and {p̄i, p̄j} all invoke taking derivatives
of coordinates with respect to momenta or momenta with respect to coordinates,
we have

{q̄i, q̄j} = 0

{p̄i, p̄j} = 0

where i and j takes on the values x, y and z. Then what we left to check are
{q̄i, p̄j}. There are three cases {ri, pj}, {rCMi, pCMj}, {rCMi, pj} or {ri, pCMj}.

(1) {ri, pj}

• i = j

{ri, pi} =
∑
α

(
∂ri
∂qα

∂pi
∂pα

− ∂ri
∂pα

∂pi
∂qα

)
=
∑
α

∂ri
∂qα

∂pi
∂pα

=
∂ri
∂r1i

∂pi
∂p1i

+
∂ri
∂r2i

∂pi
∂p2i

= 1 · m2

M
+ (−1) ·

(
−m1

M

)
=
m1 +m2

M
= 1

where qα and pα sum over all 6 components of the original posi-
tion vectors {r1x, r1y, r1z, r2x, r2y, r2z} that we denote as {r1i, r2i}
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and momentum vectors {p1x, p1y, p1z, p2x, p2y, p2z} that we denote
as {p1i, p2i}, respectively.

• i ̸= j

{xi, yj} =
∑
α

(
∂ri
∂qα

∂pj
∂pα

− ∂ri
∂pα

∂pj
∂qα

)
=
∑
α

∂ri
∂qα

∂pj
∂pα

=
∂ri
∂r1i

∂pj
∂p1i

+
∂ri
∂r2i

∂pj
∂p2i

+
∂ri
∂r1j

∂pj
∂p1j

+
∂ri
∂r2j

∂pj
∂p2j

= 1 · 0 + (−1) · 0 + 0 · m2

M
+ 0 ·

(
−m1

M

)
= 0

(2) {rCMi, pCMj}

• i = j

{rCMi, pCMi} =
∑
α

(
∂rCMi

∂qα

∂pCMi

∂pα
− ∂rCMi

∂pα

∂pCMi

∂qα

)
=
∑
α

∂rCMi

∂qα

∂pCMi

∂pα

=
∂rCMi

∂r1i

∂pCMi

∂p1i
+
∂rCMi

∂r2i

∂pCMi

∂p2i

=
m1

M
· 1 + m2

M
· 1

=
m1 +m2

M
= 1

• i ̸= j

{rCMi, pCMj} =
∑
α

(
∂rCMi

∂qα

∂pCMj

∂pα
− ∂rCMi

∂pα

∂pCMj

∂qα

)
=
∑
α

∂rCMi

∂qα

∂pCMj

∂pα

=
∂rCMi

∂r1i

∂pCMj

∂p1i
+
∂rCMi

∂r2i

∂pCMj

∂p2i
+
∂rCMi

∂r1j

∂pCMj

∂p1j
+
∂rCMi

∂r2j

∂pCMj

∂p2j

= 0

(3) {rCMi, pj} or {ri, pCMj}
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• i = j

{rCMi, pj} =
∑
α

(
∂rCMi

∂qα

∂pi
∂pα

− ∂rCMi

∂pα

∂pi
∂qα

)
=
∑
α

∂rCMi

∂qα

∂pi
∂pα

=
∂rCMi

∂r1i

∂pi
∂p1i

+
∂rCMi

∂r2i

∂pi
∂p2i

=
m1

M
· m2

M
+
m2

M
·
(
−m1

M

)
= 0

{ri, pCMj} =
∑
α

(
∂ri
∂qα

∂pCMi

∂pα
− ∂ri
∂pα

∂pCMi

∂qα

)
=
∑
α

∂ri
∂qα

∂pCMi

∂pα

=
∂ri
∂r1i

∂pCMi

∂p1i
+

∂ri
∂r2i

∂pCMi

∂p2i

= 1 · 1 + (−1) · 1
= 0

• i ̸= j

{rCMi, pj} =
∑
α

(
∂rCMi

∂qα

∂pj
∂pα

− ∂rCMi

∂pα

∂pj
∂qα

)
=
∑
α

∂rCMi

∂qα

∂pj
∂pα

=
∂rCMi

∂r1i

∂pj
∂p1i

+
∂rCMi

∂r2i

∂pj
∂p2i

+
∂rCMi

∂r1j

∂pj
∂p1j

+
∂rCMi

∂r2j

∂pj
∂p2j

= 0

{ri, pCMj} =
∑
α

(
∂ri
∂qα

∂pCMj

∂pα
− ∂ri
∂pα

∂pCMj

∂qα

)
=
∑
α

∂ri
∂qα

∂pCMj

∂pα

=
∂ri
∂r1i

∂pCMj

∂p1i
+

∂ri
∂r2i

∂pCMj

∂p2i
+

∂ri
∂r1j

∂pCMj

∂p1j
+

∂ri
∂r2j

∂pCMj

∂p2j

= 0

Thus all the Poisson brackets are correct, so the transformation is canonical.

Exercise 2.7.7. Verify that

q̄ = ln
(
q−1 sin p

)
p̄ = q cot p

is a canonical transformation.
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Solution. The partial derivatives are
∂q̄

∂q
= −q−1 ∂q̄

∂p
= cot p

∂p̄

∂q
= cot p

∂p̄

∂p
= −q(1 + cot2 p)

The only remaining term to verify is

{q̄, p̄} =
∂q̄

∂q

∂p̄

∂p
− ∂q̄

∂p

∂p̄

∂q

= −q−1(−q(1 + cot2 p)]− cot2 p

= 1

Thus the transformation is canonical.

Exercise 2.7.8. We would like to derive here Eq. (2.7.9), which gives the trans-
formation of the momenta under a coordinate transformation in configuration
space:

qi → q̄i(q1, . . . , qn)

(1) Argue that if we invert the above equation to get q = q(q̄), we can derive
the following counterpart of Eq. (2.7.7):

q̇i =
∑
j

∂qi
∂q̄j

˙̄qj

(2) Show from the above that (
∂q̇i
∂q̇j

)
q̄

=
∂qi
∂q̄j

(3) Now calculate

p̄i =

[
∂L (q̄, ˙̄q)

∂ ˙̄qi

]
q̄

=

[
∂L (q, q̇)

∂q̇i

]
q̄

Use the chain rule and the fact that q = q(q̄) and not q(q̄, ˙̄q) to derive Eq.
(2.7.9).

(4) Verify, by calculating the Poisson braket in Eq. (2.7.18), that the point
transformation is canonical.

Solution.

(1) Since qi = qi(q̄1, . . . , q̄n),

q̇i =
dqi
dt

=
∑
j

∂qi
∂q̄j

dq̄j
dt

=
∑
j

∂qi
∂q̄j

˙̄qj

(2) Since the velocities ˙̄qj are independent variables, if we hold the coordinates
q̄ constant, we will have(

∂q̇i
∂ ˙̄qj

)
q̄

=
∂

∂ ˙̄qj

(∑
l

∂qi
∂q̄k

˙̄qk

)
=
∑
k

∂qi
∂q̄k

∂ ˙̄qk
∂ ˙̄qj

=
∑
k

∂qi
∂q̄k

δkj =
∂qi
∂q̄j

(2.3)
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(3) We can use the Lagrangian to see how the momenta pi transform under
the coordinate change. The definition of the canonical momentum is

pi :=
∂L

∂q̇i

If we write the Lagrangian in terms of the new coordinates and velocities
L = L (q̄, ˙̄q), then the momenta in the new coordinate system are

p̄i =
∂L (q̄, ˙̄q)

∂ ˙̄qi

At this point, it’s worth noting that although L (q̄, ˙̄q) and L (q, q̇) are
different functions, they have the same value at each point in the config-
uration space. That is, if we choose some point that has the coordinates
(q, q̇) in the q system and coordinates (q̄, ˙̄q) in the q̄ system, then, numeri-
cally at that one point, we must have L (q̄, ˙̄q) = L (q, q̇). Because of this,
we can write

p̄i =

(
∂L (q̄, ˙̄q)

∂ ˙̄qi

)
q̄

=

(
∂L (q, q̇)

∂ ˙̄qi

)
q̄

That is, if we are keeping q̄ constant, the derivative of L with respect
to ˙̄qi must be the same (numerically) no matter what coordinates we are
using to write L . Therefore, we can use the latter form and then use the
chain rule to write out the derivative:

p̄i =

(
∂L(q, q̇)

∂q̄i

)
q̄

=
∑
j

[
∂L

∂qj

∂qj
∂ ˙̄qi

+
∂L

∂q̇j

∂q̇j
∂ ˙̄qi

]

Because the coordinates q don’t depend on the velocities ˙̄q, the first term
on the RHS is zero. We can use (2.3) in the second term, and we have

p̄i =
∑
j

∂L

∂q̇j

∂q̇j
∂ ˙̄qi

=
∑
j

∂L

∂q̇j

∂qj
∂q̄i

=
∑
j

∂qj
∂q̄i

pj

where we used the definition of canonical momentum at the last equality.
We have derived Eq. (2.7.9).

(4) Point transformation is given by

q̄i = q̄i(q1, . . . , qn)

p̄i =
∑
j

∂qj
∂q̄i

pj

In this case, the coordinate transformation to q̄ is completely arbitrary,
but the momentum transformation must follow the formula given. The
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derivatives ∂qi
∂q̄j

in the formula for p̄i are taken at constant q̄. Since the co-
ordinate formulas depend only on the old coordinates, and the momentum
formulas depend only on the old momenta, the Poisson brackets satisfy

{q̄i, q̄j} = {p̄i, p̄j} = 0

For the mixed brackets, we have

{q̄i, p̄j} =
∑
k

(
∂q̄i
∂qk

∂p̄j
∂pk

− ∂q̄i
∂pk

∂p̄j
∂qk

)

=
∑
k

∂q̄i
∂qk

(
∂

∂pk

(∑
l

∂ql
∂q̄j

pl

))

=
∑
k

∂q̄i
∂qk

(∑
l

∂ql
∂q̄j

∂pl
∂pk

)

=
∑
k

∂q̄i
∂qk

(∑
l

∂ql
∂q̄j

δlk

)

=
∑
k

∂q̄i
∂qk

∂qk
∂q̄j

=
∂q̄i
∂q̄j

= δij

Thus the point transformation is a canonical transformation.

Exercise 2.7.9. Verify Eq. (2.7.19) by direct computation. Use the chain
rule to go from q, p derivatives to q̄, p̄ derivatives. Collect terms that represent
Poisson braket of the latter.

Solution. The Poisson bracket of two functions is defined as

{ω, σ} =
∑
i

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
Calculating the Poisson bracket requires knowing ω and σ as functions of the
coordinates qi and momenta pi in the particular coordinate system we’re using.

The simplest way of finding out is to write the canonical transformation as

q̄i = q̄i(q, p)

p̄i = p̄(q, p)

We can then write the Poisson bracket in the new coordinates as

{ω, σ}q̄,p̄ =
∑
j

(
∂ω

∂q̄j

∂σ

∂p̄j
− ∂ω

∂p̄j

∂σ

∂q̄j

)
Assuming the transformation is invertible, we can use the chain rule to calculate
the derivatives with respect to the barred coordinates. This gives the following
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(Here we use Einstein summation convention):

{ω, σ}q̄,p̄ =

(
∂ω

∂qi

∂qi
∂q̄j

+
∂ω

∂pi

∂pi
∂q̄j

)(
∂σ

∂qk

∂qk
∂p̄j

+
∂σ

∂pk

∂pk
∂p̄j

)
−
(
∂ω

∂qi

∂qi
∂p̄j

+
∂ω

∂pi

∂pi
∂p̄j

)(
∂σ

∂qk

∂qk
∂q̄j

+
∂σ

∂pk

∂pk
∂q̄j

)
=
∂ω

∂qi

∂σ

∂pk

(
∂qi
∂q̄j

∂pk
∂p̄j

− ∂qi
∂p̄j

∂pk
∂q̄j

)
+
∂ω

∂pi

∂σ

∂qk

(
∂pi
∂q̄j

∂qk
∂p̄j

− ∂pi
∂p̄j

∂qk
∂q̄j

)
+
∂ω

∂qi

∂σ

∂qk

(
∂qi
∂q̄j

∂qk
∂p̄j

− ∂qi
∂p̄j

∂qk
∂q̄j

)
+
∂ω

∂pi

∂σ

∂pk

(
∂pi
∂q̄j

∂pk
∂p̄j

− ∂pi
∂p̄j

∂pk
∂q̄j

)
=
∂ω

∂qi

∂σ

∂pk
{qi, pk}+

∂ω

∂pi

∂σ

∂qk
{pi, qk}+

∂ω

∂qi

∂σ

∂qk
{qi, qk}+

∂ω

∂pi

∂σ

∂pk
{pi, pk}

For a canonical transformation, the Poisson brackets in the last equation satisfy

{qi, pk} = −{pi, qk} = δik
{qi, qk} = {pi, pk} = 0

Applying these conditions to the above, we find

{ω, σ}q̄,p̄ =

(
∂ω

∂qi

∂σ

∂pk
− ∂ω

∂pi

∂σ

∂qk

)
δik

=
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

= {ω, σ}q,p

Thus the Poisson bracket is invariant under a canonical transformation.

2.8 Symmetries and Their Consequences
Exercise 2.8.1. Show that p = p1 + p2, the total momentum, is the generator
of infinitesimal translations for a two-particle system.

Solution. Since g = p1 + p2, it generates the infinitesimal transformations

δx1 = +ε ∂g
∂p1

= +ε, δp1 = −ε ∂g
∂x1

= 0

δx2 = +ε ∂g
∂p2

= +ε, δp2 = −ε ∂g
∂x2

= 0

So to order ε, these give the canonical transformations xi → x̄i(xj , pj) and
pi → p̄i(xj , pj) with

x̄1 = x1 + ε, p̄1 = p1,
x̄2 = x2 + ε, p̄2 = p2,

which is precisely a spatial transformation of the whole system by an amount ε.

Exercise 2.8.2. Verify that the infinitesimal transformation generated by any
dynamical variable g is a canonical transformation. (Hint: Work, as usual, to
first order in ε.)
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Solution. If the coordinates and momenta after the infinitesimal transforma-
tion generated by dynamical variable g becomes

q̄i = qi + ε
∂g

∂pi

p̄j = pj − ε
∂g

∂qj

Then the Poisson brackets between new coordinate and momentum is

{q̄i, p̄j} =
∑
k

(
∂q̄i
∂qk

∂p̄j
∂pk

− ∂q̄i
∂pk

∂p̄j
∂qk

)
=
∑
k

[(
δik + ε

∂2g

∂pi∂qk

)(
δjk + ε

∂2g

∂qj∂pk

)
− ε

∂2g

∂pi∂pk
· ε ∂2g

∂qi∂qk

]
=
∑
k

[
δikδjk + ε

∂2g

∂pi∂qk
· δjk − δik · ε ∂2g

∂qj∂pk
+O(ε2)

]
= δij + ε

∂2g

∂pi∂qj
− ε

∂2g

∂qj∂pi
+O(ε2)

= δij +O(ε2)

≈ δij

Therefore, the infinitesimal transformation generated by any dynamical variable
g is a canonical transformation.

Exercise 2.8.3. Consider

H =
p2x + p2y
2m

+
1

2
mω2

(
x2 + y2

)
whose invariance under the rotation of the coordinates and momenta leads to
the conservation of lz. But H is also invariant under the rotation of just
the coordinates. Verify that this is a noncanonical transformation. Convince
yourself that in this case it is not possible to write δH as ε{H , g} for any g,
i.e., that no conservation law follows.

Solution. Rotation of just the coordinates:{
x̄ = x cos θ − y sin θ

ȳ = x sin θ + y cos θ

{
p̄x = px

p̄y = py
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Then the Poisson brackets are

{x̄, ȳ} =
∂x̄

∂x

∂ȳ

∂px
− ∂x̄

∂px

∂ȳ

∂x
+
∂x̄

∂y

∂ȳ

∂py
− ∂x̄

∂py

∂ȳ

∂y
= 0

{p̄x, p̄y} = {px, py} = 0

{x̄, p̄x} =
∂x̄

∂x

∂p̄x
∂px

− ∂x̄

∂px

∂p̄x
∂x

+
∂x̄

∂y

∂p̄x
∂py

− ∂x̄

∂py

∂p̄x
∂y

= cos θ ̸= 1

{x̄, p̄y} =
∂x̄

∂x

∂p̄y
∂px

− ∂x̄

∂px

∂p̄y
∂x

+
∂x̄

∂y

∂p̄y
∂py

− ∂x̄

∂py

∂p̄y
∂y

= − sin θ ̸= 0

{ȳ, p̄x} =
∂ȳ

∂x

∂p̄x
∂px

− ∂ȳ

∂px

∂p̄x
∂x

+
∂ȳ

∂y

∂p̄x
∂py

− ∂ȳ

∂py

∂p̄x
∂y

= sin θ ̸= 0

{ȳ, p̄y} =
∂ȳ

∂x

∂p̄y
∂px

− ∂ȳ

∂px

∂p̄y
∂x

+
∂ȳ

∂y

∂p̄y
∂py

− ∂ȳ

∂py

∂p̄y
∂y

= cos θ ̸= 1

Thus, rotation of just the coordinates is not a canonical transformation.
If δH = ε{H , g} = ε

(
∂H
∂x

∂g
∂px

− ∂H
∂px

∂g
∂x + ∂H

∂y
∂g
∂py

− ∂H
∂py

∂g
∂y

)
, we have

δx = ε
∂g

∂px
δpx = −ε ∂g

∂x
,

δy = ε
∂g

∂py
δpy = −ε∂g

∂y
.

which means that 
x̄ = x+ ε

∂g

∂px

ȳ = y + ε
∂g

∂py


p̄x = px − ε

∂g

∂x

p̄y = py − ε
∂g

∂y

According to last exercise, this is a canonical transformation. Therefore, there
doesn’t exists any g, such that δH = ε{H , g}.

Exercise 2.8.4. Consider H = 1
2p

2 + 1
2x

2, which is invariant under infinites-
imal rotations in phase space (the x − p plane). Find the generator of this
transformation (after verifying that it is canonical). (You could have guessed
the answer based on Exercise 2.5.2.).

Solution. Consider a one-dimensitonal system with

H =
1

2
(p2 + x2)

and perform a infinitesimal rotation in phase space x− p plane:

δx = εp

δp = −εx

This is a canonical transformation since

{x̄, p̄} = {x, p}+ ε{δx, p}+ ε{x, δp}+O(ε2)

= {x, p}
= 1
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If g(x, p) is the generator

δx = ε{x, g} = ε
∂g

∂p
= εp⇒ ∂g

∂p
= p

δp = ε{p, g} = −ε ∂g
∂x

= −εx⇒ ∂g

∂x
= x

The solution of these two equations is

g(x, p) =
1

2
(p2 + x2) + C

where C is a constant of integration. The equality is just the Hamiltonian itself.
In fact, the canonical transformation is just the time evolution with θ = t.

Exercise 2.8.5. Why is it that a noncanonical transformation that leaves H
invariant does not map a solution into another? Or, in view of the discussions
on consequence II, why is it that an experiment and its transformed version do
not give the same result when the transformation that leaves H invariant is not
canonical? It is best to consider an example. Consider the potential given in Ex-
ercise 2.8.3. Suppose I release a particle at (x = a, y = 0) with (px = b, py = 0)
and you release one in the transformed state in which (x = 0, y = a) and
(px = b, py = 0), i.e., you rotate the coordinates but not the momenta. This
is a noncanonical transformation that leaves H invariant. Convince yourself
that at later times the states of the two particles are not related by the same
transformation. Try to understand what goes wrong in the general case.

Solution. If the Hamiltonian is invariant under a regular canonical transfor-
mation and we can find a generator g such that an infinitesimal version of this
transformation is given by

q̄i = qi + ε
∂g

∂pi
≡ qi + δqi

p̄i = pi − ε
∂g

∂qi
≡ pi + δpi

then g is conserved.
If we are dealing with a finite regular canonical transformation where we go

from (q, p) → (q̄, p̄), and the Hamiltonian is invariant under this transformation,
then it turns out that if a trajectory (q(t), p(t)) satisfies Hamilton’s equations
of motion:

∂H

∂pi
= q̇i

−∂H
∂qi

= ṗi

then the trajectory obtained by transforming every point in the original trajec-
tory (q(t), p(t)) to the barred system (q̄(t), p̄(t)) is also a solution of Hamilton’s
equations in the sense that

∂H

∂p̄i
= ˙̄qi (2.4)

−∂H
∂q̄i

= ˙̄pi (2.5)
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The proof of this is a bit subtle, but goes as follows. To begin, review the
derivation of the conditions for a transformation to be canonical. This deriva-
tion applied to a passive transformation, in which the two sets of parameters
(q, p) → (q̄, p̄) refer to the same point in phase space. The transformation we’re
considering here is an active transformation, in which (q, p) → (q̄, p̄) actually
moves the point in phase space. The original derivation (for passive transforma-
tions) relied on the fact that the numerical value of the Hamiltonian is the same
in both coordinate systems, since both (q, p) and (q̄, p̄) refer to the same point
in phase space. However, for our active transformation, we’re assuming that the
Hamiltonian is invariant under the transformation, that is H(q̄, p̄) = H(q, p),
where (q, p) and (q̄, p̄) now refer to different points in phase space. Since the as-
sumption that the Hamiltonian satisfies H(q̄, p̄) = H(q, p) was all that we used
in the original derivation, the same derivation works both for passive transfor-
mations (always) and for active transformations (if the Hamiltonian is invariant
under the active transformation). We therefore end up with the equations

˙̄qj =
∑
k

∂H

∂q̄k
{q̄j , q̄k}+

∑
k

∂H

∂p̄k
{q̄j , p̄k} (2.6)

˙̄pj =
∑
k

∂H

∂q̄k
{p̄j , q̄k}+

∑
k

∂H

∂p̄k
{p̄j , p̄k} (2.7)

Since the transformation is specified to be canonical, the conditions on the
Poisson brackets apply here:

{q̄j , q̄k} = {p̄j , p̄k} = 0 (2.8)
{q̄j , p̄k} = δjk (2.9)

The result is that the transformed trajectory also satisfies Hamilton’s equations
(2.4) and (2.5).

We can now revisit the 2-d harmonic oscillator to show that a noncanonical
transformation violates these results. The Hamiltonian is

H =
1

2m

(
p2x + p2y

)
+

1

2
mω2

(
x2 + y2

)
and we consider the transformation where we rotate the coordinates but not the
momenta. The transformation is

x̄ = x cos θ − y sin θ

ȳ = x sin θ + y cos θ

p̄x = px

p̄y = py

As we’ve seen, this is a noncanonical transformation. To see what happens,
we’ll consider the initial conditions

x(0) = a

px(0) = b

y(0) = py(0) = 0
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The mass is started off at a point on the x axis with a momentum only in the x
direction. In this case, the mass behaves like a one-dimensional harmonic oscil-
lator, moving along the x axis only. To be precise, we can work out Hamilton’s
equations of motion:

ṗx = −∂H
∂x

= −mω2x (2.10)

ẋ =
∂H

∂px
=
px
m

(2.11)

The equations for y and py are the same, with x replaced by y everywhere.
We can solve these ODEs in the usual way, by differentiating the first one and
substituting the second one into the first to get

p̈x = −mω2ẋ = −ω2px

This has the general solution

px(t) = A cosωt+B sinωt

We can do the same for x and get

x(t) = C cosωt+D sinωt

Applying the initial conditions, we get

px(0) = A = b

x(0) = C = a

Plugging these into the equations of motion (2.10) and (2.11) and solving for B
and D we get the final solution

px(t) = b cosωt−mωa sinωt

x(t) = a cosωt+
b

mω
sinωt

y(t) = py(t) = 0

Now suppose we start off with x(0) = 0, y(0) = a, px(0) = b and py(0) = 0.
That is, we have rotated the coordinates through π

2 , but not the momenta. We
now begin with the mass on the y axis, but moving in the x direction, so as
time progresses, it will have components of momentum in both the x and y
directions. Although it’s fairly obvious that this motion will not be simply the
motion in the first case rotated through π

2 , let’s go through the equations. By
the same technique as above, we can solve the equations to get

px(t) = b cosωt

py(t) = −mωa sinωt

x(t) =
b

mω
sinωt

y(t) = a cosωt

If we look at the system at, say, t = π
2ω , then cosωt = 0 and sinωt = 1. The

mass that started off on the x axis will be at position (x, y) =
(

b
mω , 0

)
and so
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will the mass that started off on the y axis. Since the two masses are in the
same place, obviously one is not the rotated version of the other.

Another, probably easier, way to see this is that since the first mass moves
only along the x axis, if the rotated version of the trajectory was also to be
a solution, the rotated trajectory would have to lie entirely along the y axis,
which is certainly not true for the mass that starts off on the y axis, but with
a momentum px ̸= 0.

In the general case, if the transformation is noncanonical, then the Poisson
brackets in (2.6) and (2.7) don’t satisfy the conditions (2.8) and (2.9), with
the result that Hamilton’s equations aren’t satisfied in the (q̄, p̄) coordinates.
(There may be a deeper, physical interpretation that I’ve missed, but from a
mathematical point of view, that’s what goes wrong.)

Exercise 2.8.6. Show that ∂Scl/∂xf = p (tf ).

Solution. The situation is as shown in the following diagram:

t

x

x(t)

xcl(t)

tf

xf

xf +∆x

η(t)

The two trajectories now take the same time, but in the modified trajectory,
the particle moves a distance ∆x further. Since both paths take the same time,
there is no extra contribution L∆t. In this case η(t) > 0, since the new (blue)
curve x(t) is above the old (red) one xcl(t). The total variation in the action is
now

δScl =
∂L

∂ẋ
η(t)

∣∣∣∣
tf

At t = tf , η(tf ) = ∆x, we get

δScl =
∂L

∂ẋ

∣∣∣∣
tf

∆x

∂Scl

∂xf
=
∂L

∂ẋ

∣∣∣∣
tf

= p(tf )

Exercise 2.8.7. Consider the harmonic oscillator, for which the general solu-
tion is

x(t) = A cosωt+B sinωt.

Express the energy in terms of A and B and note that it does not depend on
time. Now choose A and B such that x(0) = x1 and x(T ) = x2. Write down
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the energy in terms of x1, x2, and T . Show that the action for the trajectory
connecting x1 and x2 is

Scl (x1, x2, T ) =
mω

2 sinωT

[(
x21 + x22

)
cosωT − 2x1x2

]
Verify that ∂Scl/∂T = −E.

Solution. For the case of the one-dimensional harmonic oscillator, we have

∂Scl

∂tf
= −H (tf )

The general solution for the position is given by

x(t) = A cosωt+B sinωt

ẋ(t) = −Aω sinωt+Bω cosωt

The total energy is given by

E =
1

2
mẋ2 +

1

2
mω2x2

=
m

2

(
(−Aω sinωt+Bω cosωt)2 + ω2(A cosωt+B sinωt)2

)
=
mω2

2

(
A2 +B2

) (2.12)

where we just multiplied out the second line, cancelled terms and used cos2 x+
sin2 x = 1.

To get the action, we need the Lagrangian:

L = T − V

=
1

2
mẋ2 − 1

2
mω2x2

=
m

2

(
(−Aω sinωt+Bω cosωt)2 − ω2(A cosωt+B sinωt)2

)
=
mω2

2

[
A2
(
sin2 ωt− cos2 ωt

)
+B2

(
cos2 ωt− sin2 ωt

)
− 4AB sinωt cosωt

]
=
mω2

2

((
B2 −A2

)
cos 2ωt− 2AB sin 2ωt

)
The action for a trajectory from t = 0 to t = T is then

S =

∫ T

0

Ldt

=
mω

4

[(
B2 −A2

)
sin 2ωt+ 2AB cos 2ωt

]T
0

=
mω

4

[(
B2 −A2

)
sin 2ωT + 2AB(cos 2ωT − 1)

]
=
mω

2

[(
B2 −A2

)
sinωT cosωT +AB

(
cos2 ωT − sin2 ωT − 1

)]
=
mω

2

[(
B2 −A2

)
sinωT cosωT − 2AB sin2 ωT

]
(2.13)
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To proceed further, we need to specify A and B, since these depend on the
boundary conditions (that is, on where we require the mass to be at t = 0 and
t = T ). If we require x(0) = x1 and x(T ) = x2, then

A = x1

x1 cosωT +B sinωT = x2

B =
x2 − x1 cosωT

sinωT

Plugging these into (2.12) gives the energy as

E =
mω2

2

(
x21 +

(
x2 − x1 cosωT

sinωT

)2
)

=
mω2

2 sin2 ωT

(
x21 + x22 − 2x1x2 cosωT

)
Plugging A and B into (2.13), we get:

S =
mω

2 sinωT

[
(x2 − x1 cosωT )

2
cosωT − x1 sin

2 ωT cosωT − 2x1 sin
2 ωT (x2 − x1 cosωT )

]
=

mω

2 sinωT

[(
x22 − 2x1x2 cosωT + x21 cos

2 ωT
)
cosωT − x21 sin

2 ωT cosωT − 2x1x2 sin
2 ωT + 2x1 sin

2 ωT cosωT
]

=
mω

2 sinωT

[(
x21 + x22

)
cosωT − 2x1x2

]
Taking the derivative, we get

∂S

∂T
=

mω

2 sin2 ωT

[
−ω

(
x21 + x22

)
sin2 ωT −

((
x21 + x22

)
cosωT − 2x1x2

)
ω cosωT

]
=

mω2

2 sin2 ωT

[
−
(
x21 + x22

)
+ 2x1x2 cosωT

]
= − mω2

2 sin2 ωT

(
x21 + x22 − 2x1x2 cosωT

)
= −E

Thus the result is verified for the harmonic oscillator.
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All Is Not Well with
Classical Mechanics
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Chapter 4

The Postulates——a
General Discussion

4.1 The Postulates

4.2 Discussion of Postulates I-III
Exercise 4.2.1. Consider the following operators on a Hilbert space V3(C):

Lx =
1

21/2

0 1 0
1 0 1
0 1 0

 Ly =
1

21/2

0 −i 0
i 0 −i
0 i 0

 Lz =

1 0 0
0 0 0
0 0 −1


(1) What are the possible values one can obtain if Lz is measured?

(2) Take the state in which Lz = 1. In this state what are ⟨Lx⟩, ⟨L2
x⟩ and

∆Lx?

(3) Find the normalized eigenstates and the eigenvalues of Lx in the Lz basis.

(4) If the particle is in the state with Lz = −1, and Lx is measured, what are
the possible outcomes and their probabilities?

(5) Consider the state

|ψ⟩ =

 1/2
1/2

1/21/2


in the Lz basis. If L2

z is measured in this state and a result +1 is obtained,
what is the state after the measurement? How probable was this result?
If Lz is measured, what are the outcomes and respective probabilities?

(6) A particle is in a state for which the probabilities are P (Lz = 1) = 1/4,
P (Lz = 0) = 1/2, and P (Lz = −1) = 1/4. Convince yourself that the
most general, normalized state with this property is

|ψ⟩ = eiδ1

2
|Lz = 1⟩+ eiδ2

21/2
|Lz = 0⟩+ eiδ3

2
|Lz = −1⟩

59
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It was stated earlier on that if |ψ⟩ is a normalized state then the state
eiθ|ψ⟩ is a physically equivalent normalized state. Does this mean that
the factors eiδi multiplying the Lz eigenstates are irrelevant? [Calculate
for example P (Lx = 0).]

Solution.

(1) The possible values one can obtain if Lz is measured are its eigenvalues

Lz =

1 0 0
0 0 0
0 0 −1


Eigenvalues are 1, 0,−1.

(2) The state in which Lz|ψ⟩ = 1 · |ψ⟩ is the corresponding eigenvector

|ψ⟩ =

1
0
0


Then in |ψ⟩

⟨Lx⟩ = ⟨ψ|Lx|ψ⟩ = (1 0 0)
1√
2

0 1 0
1 0 1
0 1 0

1
0
0

 =
1√
2
(1 0 0)

0
1
0

 = 0

⟨L2
x⟩ = ⟨ψ|L2

x|ψ⟩ = (1 0 0)
1

2

0 1 0
1 0 1
0 1 0

0 1 0
1 0 1
0 1 0

1
0
0

 =
1

2
(0 1 0)

0
1
0

 =
1

2

∆Lx =
√

⟨L2
x⟩ − (⟨Lx⟩)2 =

√(
1

2

)
− 02 =

1√
2

(3) The characteristic equation for Lx is

0 = det(Lx−λ) = det

−λ 1√
2

0
1√
2

−λ 1√
2

0 1√
2

−λ

 = λ−λ3 ⇒ λ ∈ {1, 0,−1}.

The corresponding eigenvectors |λ⟩, then satisfy

0 = (Lx − λI)|λ⟩ =

−λ 1√
2

0
1√
2

−λ 1√
2

0 1√
2

−λ


ab
c

 =

 −λa+ b√
2

a√
2
− λb+ c√

2
b√
2
− λa


where we have parameterized the components of |λ⟩ by (a b c). For λ = 1,
we can solve for b and c in terms of a by solving the following equations:

−a+ b√
2
= 0

a√
2
− b+

c√
2
= 0

b√
2
− a = 0
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We get {
b =

√
2a

c = a

We then determine a by normalizing |λ = 1⟩:

|λ = 1⟩ =

 a√
2a
a


⇒ 1 = ⟨λ = 1|λ = 1⟩ = (a∗

√
2a∗ a∗)

 a√
2a
a

 = 4|a|2

⇒ a =
1

2

(where I have chosen the arbitrary phase to be 1).
We could do the same thing for λ = 0:

b√
2
= 0

a√
2
+

c√
2
= 0

b√
2
= 0

has a solution: {
b = 0

c = −a

Normalizing:

|λ = 0⟩ =

 a
0
−a


⇒ 1 = ⟨λ = 0|λ = 0⟩ = (a∗ 0 − a∗)

 a
0
−a

 = 2|a|2

⇒ a =
1√
2

And for λ = −1: 

a+
b√
2
= 0

a√
2
+ b+

c√
2
= 0

b√
2
+ a = 0

We get {
b = −

√
2a

c = a
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Normalizing:

|λ = −1⟩ =

 a

−
√
2a
a


⇒ 1 = ⟨λ = −1|λ = −1⟩ = (a∗ −

√
2a∗ a∗)

 a

−
√
2a
a

 = 4|a|2

⇒ a =
1

2

Therefore,

|λ = 1⟩ = 1

2

 1√
2
1

 |λ = 0⟩ = 1√
2

 1
0
−1

 |λ = −1⟩ = 1

2

 1

−
√
2

1


Next, we should compute the components of these 3 Lx-eigenstate in the
{|1⟩, |0⟩, | − 1⟩}-basis of Lz-eigenstates. But since Lz is diagonal in the
basis in which Lx, Ly and Lz are given, the basis that Shankar used to
write down the matrix elements of Lx, Ly, Lz is the Lz-eigenbasis. So the
components of |Lx = 1, 0,−1⟩ in the given basis that we just calculated
are their components in the Lz-eigenbasis.

(4) The eigenvectors of Lz corresponding to Lz = −1 is

0
0
1

. If we measure

Lx in any state, the possible outcomes are any one of the eigenvalues
Lx = ±1, 0.
The probabilities for Lx = ±1, 0 in the state | − 1⟩ = |Lz = −1⟩ are:

P (Lx = 1) = |⟨Lx = 1|Lz = −1⟩|2 =

∣∣∣∣∣∣(12 1√
2

1

2
)

0
0
1

∣∣∣∣∣∣
2

=
1

4

P (Lx = 0) = |⟨Lx = 0|Lz = −1⟩|2 =

∣∣∣∣∣∣( 1√
2
0 − 1√

2
)

0
0
1

∣∣∣∣∣∣
2

=
1

2

P (Lx = −1) = |⟨Lx = −1|Lz = −1⟩|2 =

∣∣∣∣∣∣(12 − 1√
2

1

2
)

0
0
1

∣∣∣∣∣∣
2

=
1

4

(5) Consider the state

|ψ⟩ =

 1
2
1
2
1√
2


in the Lz basis.
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Since L2
z is measured to be +1, Lz can be +1 or −1. The state after the

measurement is

|ψ⟩after = N (|Lz = +1⟩⟨Lz = +1|+ |Lz = −1⟩⟨Lz = −1|)|ψ⟩

= N

1
0
0

 (1 0 0) +

0
0
1

 (0 0 1)

 1
2
1
2
1√
2


= N

1 0 0
0 0 0
0 0 1

 1
2
1
2
1√
2

 = N

 1
2
0
1√
2


=

1√(
1
2

)2
+
(

1√
2

)2
 1

2
0
1√
2



=
2√
3

 1
2
0
1√
2



=


1√
3

0√
2
3


where N normalizes the state. The probability of this result is

P (L2
z = +1) = P (Lz = +1) + P (Lz = −1)

= |⟨Lz = +1|ψ⟩|2 + |⟨Lz = −1|ψ⟩|2

=

∣∣∣∣∣∣(1 0 0)

 1
2

simpletex 1
2

1√
2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣(0 0 1)

 1
2
1
2
1√
2

∣∣∣∣∣∣
2

=

∣∣∣∣12
∣∣∣∣2 + ∣∣∣∣ 1√

2

∣∣∣∣2
=

1

4
+

1

2

=
3

4

If Lz is measured after L2
z was measured and L2

z = +1 was found, the
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possible outcomes and relative probabilities are:

P (Lz = +1)after = |⟨Lz = +1|ψ⟩after|2 =

∣∣∣∣∣∣∣(1 0 0)


1√
3

0√
2
3


∣∣∣∣∣∣∣
2

=
1

3

P (Lz = 0)after = |⟨Lz = 0|ψ⟩after|2 =

∣∣∣∣∣∣∣(0 1 0)


1√
3

0√
2
3


∣∣∣∣∣∣∣
2

= 0

P (Lz = −1)after = |⟨Lz = −1|ψ⟩after|2 =

∣∣∣∣∣∣∣(0 0 1)


1√
3

0√
2
3


∣∣∣∣∣∣∣
2

=
2

3

(6) A particle is in a state for which the probabilities are P (Lz = 1) = 1/4,
P (Lz = 0) = 1/2, and P (Lz = −1) = 1/4. Suppose it has the following
form

|ψ⟩ = C1|Lz = +1⟩+ C2|Lz = 0⟩+ C3|Lz = −1⟩

where C1, C2 and C3 are complex numbers. Then we have

|C1|2 = C∗
1C1 = P (Lz = +1) =

1

4
⇒ C1 =

1

2
eiδ1

|C2|2 = C∗
2C2 = P (Lz = 0) =

1

2
⇒ C2 =

1√
2
eiδ2

|C3|2 = C∗
3C3 = P (Lz = −1) =

1

4
⇒ C3 =

1

2
eiδ3

where δ1, δ2 and δ3 are arbitrary real numbers. Therefore, it has the form

|ψ⟩ = eiδ1

2
|Lz = 1⟩+ eiδ2

21/2
|Lz = 0⟩+ eiδ3

2
|Lz = −1⟩

The values of the phases matter when measuring an observable that is
incompatible with Lz, as an example:

⟨Lx = 0|Lz = 1⟩ = 1√
2
(1 0 − 1)

1
0
0

 =
1√
2

⟨Lx = 0|Lz = 0⟩ = 1√
2
(1 0 − 1)

0
1
0

 = 0

⟨Lx = 0|Lz = −1⟩ = 1√
2
(1 0 − 1)

0
0
1

 = − 1√
2
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P (Lx = 0) = |⟨Lx = 0|ψ⟩|2

=

∣∣∣∣∣∣∣
(

1√
2
0 − 1√

2

)
eiδ1

2
eiδ2√

2
eiδ3

2


∣∣∣∣∣∣∣
2

=
1

8
|eiδ1 − eiδ3 |2

=
1

8
(eiδ1 − eiδ3)(e−iδ1 − e−iδ3)

=
1

8
(1− ei(δ1−δ3) − e−i(δ1−δ3) + 1)

=
1

8
(2− 2 · e

i(δ1−δ3) + e−i(δ1−δ3)

2
)

=
1

4
(1− cos(δ1 − δ3))

It depends on phases and can be measured by experiment.

Exercise 4.2.2. Show that for a real wave function ψ(x), the expectation value
of momentum ⟨P ⟩ = 0. (Hint: Show that the probabilities for the momenta ±p
are equal.) Generalize this result to the case ψ = cψr, where ψr is real and c an
arbitrary (real or complex) constant. (Recall that |ψ⟩ and α|ψ⟩ are physically
equivalent.)

Solution. Since ψ(x) is real, ψ∗(x) = ψ(x).

⟨P ⟩ =
∫ +∞

−∞
ψ∗(x)

(
−iℏ ∂

∂x

)
ψ(x) dx

= −iℏ
∫ +∞

−∞
ψ(x)

∂

∂x
ψ(x) dx

= −1

2
iℏ
∫ +∞

−∞

∂

∂x
ψ2(x) dx

= −1

2
iℏψ2(x)

∣∣∣∣+∞

−∞

= 0

Since ψ(x) → 0, as x→ ±∞.
For general case,

⟨P ⟩ =
∫ +∞

−∞
[cψr(x)]

∗
(
−iℏ ∂

∂x

)
[cψr(x)]

= |c|2
∫ +∞

−∞
ψr(x)

(
−iℏ ∂

∂x

)
ψr(x) dx

= |c|2 · 0
= 0

Exercise 4.2.3. Show that if ψ(x) has mean momentum ⟨P ⟩, eip0x/ℏψ(x) has
mean momentum ⟨P ⟩+ p0.
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Solution.

⟨P ⟩ = −iℏ
∫ +∞

−∞
ψ∗(x)

∂

∂x
ψ(x) dx

⟨P ′⟩ = −iℏ
∫ +∞

−∞
[e−ip0x/ℏψ∗(x)]

∂

∂x
[eip0x/ℏψ(x)] dx

= −iℏ
∫ +∞

−∞
[e−ip0x/ℏψ∗(x)][eip0x/ℏ · ip0/ℏ · ψ(x) + eip0x/ℏ ∂

∂x
ψ(x)] dx

= −iℏ
∫ +∞

−∞
e−ip0x/ℏψ∗(x) · eip0x/ℏ · ip0/ℏ · ψ(x) dx

− iℏ
∫ +∞

−∞
e−ip0x/ℏψ∗(x) · eip0x/ℏ ∂

∂x
ψ(x) dx

= p0

∫ +∞

−∞
ψ∗(x)ψ(x) dx− iℏ

∫ +∞

−∞
ψ∗(x) · ∂

∂x
ψ(x) dx

= ⟨P ⟩+ p0

4.3 The Schrödinger Equation (Dotting Your is
and Crossing your ℏs)
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Simple Problems in One
Dimension

5.1 The Free Particle
Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over E
and a sum over the ± index as

U(t) =
∑
α=±

∫ ∞

0

[
m

(2mE)1/2

]
|E,α⟩⟨E,α|e−iEt/ℏdE

Solution. E =
p2

2m
→ p = α

√
2mE

dp =
αm√
2mE

dE

where α = ±1. Hence

U(t) =

∫ +∞

−∞
dp |p⟩⟨p|e−iEt/ℏ

=

∫ 0

−∞
dp |p⟩⟨p|e−iEt/ℏ +

∫ +∞

0

dp |p⟩⟨p|e−iEt/ℏ

=

∫ 0

−∞
dE

−m√
2mE

|E,−⟩⟨E,−|e−iEt/ℏ +

∫ +∞

0

dE
m√
2mE

|E,+⟩⟨E,+|e−iEt/ℏ

=

∫ +∞

0

dE
m√
2mE

|E,−⟩⟨E,−|e−iEt/ℏ +

∫ +∞

0

dE
m√
2mE

|E,+⟩⟨E,+|e−iEt/ℏ

=
∑
α=±

∫ ∞

0

[
m

(2mE)1/2

]
|E,α⟩⟨E,α|e−iEt/ℏdE

Exercise 5.1.2. By solving the eigenvalue equation (5.1.3) in the X basis,
regain Eq. (5.1.8), i.e., show that the general solution of energy E is

ψE(x) = β
exp

[
i(2mE)1/2x/ℏ

]
(2πℏ)1/2

+ γ
exp

[
−i(2mE)1/2x/ℏ

]
(2πℏ)1/2

67
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[The factor (2πℏ)−1/2 is arbitrary and may be absorbed into β and γ.] Though
ψE(x) will satisfy the equation even if E < 0, are these functions in the Hilbert
space?

Solution. In X basis, equation (5.1.3) is

⟨x | H | E⟩ = E⟨x | E⟩

which becomes
− ℏ2

2m

d2

dx2
ψE(x) = EψE(x)

The most general solution is

ψE(x) = A+e
+ i

ℏ
√
2mEx +A−e

− i
ℏ
√
2mEx

where
⟨x | E⟩ = β⟨x | E,+⟩+ γ⟨x | E,−⟩

β = A+

√
2πℏ

γ = A−
√
2πℏ

If E < 0, these solutions are not in the Hilbert space, since then the two terms
grow exponentially as x→ ±∞.

Exercise 5.1.3. We have seen that there exists another formula for U(t),
namely, U(t) = e−iHt/ℏ. For a free particle this becomes

U(t) = exp

[
i

ℏ

(
ℏ2t
2m

d2

dx2

)]
=

∞∑
n=0

1

n!

(
iℏt
2m

)n
d2n

dx2n
(5.1.18)

Consider the initial state in Eq. (5.1.14) with p0 = 0, and set ∆ = 1, t′ = 0 :

ψ(x, 0) =
e−x2/2

(π)1/4

Find ψ(x, t) using Eq. (5.1.18) above and compare with Eq. (5.1.15).
Hints : (1) Write ψ(x, 0) as a power series:

ψ(x, 0) = (π)−1/4
∞∑

n=0

(−1)nx2n

n!(2)n

(2) Find the action of a few terms

1,

(
iℏt
2m

)
d2

dx2
,

1

2!

(
iℏt
2m

d2

dx2

)2

etc., on this power series.
(3) Collect terms with the same power of x.
(4) Look for the following series expansion in the coefficient of x2n :(

1 +
itℏ
m

)−n−12

= 1− (n+ 1/2)

(
iℏt
m

)
+

(n+ 1/2)(n+ 3/2)

2!

(
itℏ
m

)2

+ · · ·

(5) Juggle around till you get the answer.
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Solution.

Exercise 5.1.4. Consider the wave function

ψ(x, 0) = sin
(πx
L

)
, |x| ⩽ L/2

= 0, |x| > L/2

It is clear that when this function is differentiated any number of times we get
another function confined to the interval |x| ⩽ L/2. Consequently the action of

U(t) = exp

[
i

ℏ

(
ℏ2t
2m

)
d2

dx2

]
on this function is to give a function confined to |x| ⩽ L/2. What about the
spreading of the wave packet?

5.2 The Particle in a Box
Exercise 5.2.1. A particle is in the ground state of a box of length L. Suddenly
the box expands (symmetrically) to twice its size, leaving the wave function
undisturbed. Show that the probability of finding the particle in the ground
state of the new box is (8/3π)2.

Exercise 5.2.2. (a) Show that for any normalized |ψ⟩, ⟨ψ|H|ψ⟩ ⩾ E0, where
E0 is the lowest-energy eigenvalue. (Hint : Expand |ψ⟩ in the eigenbasis of H.)

(b) Prove the following theorem: Every attractive potential in one dimension
has at least one bound state. Hint: Since V is attractive, if we define V (∞) = 0,
it follows that V (x) = −|V (x)| for all x. To show that there exists a bound
state with E < 0, consider

ψα(x) =
(α
π

)1/4
e−αx2/2

and calculate

E(α) = ⟨ψα|H|ψα⟩ , H = − ℏ2

2m

d2

dx2
− |V (x)|

Show that E(α) can be made negative by a suitable choice of α. The desired
result follows from the application of the theorem proved above.

Exercise 5.2.3. Consider V (x) = −aV0δ(x). Show that it admits a bound
state of energy E = −ma2V 2

0 /2ℏ2. Are there any other bound states? Hint:
Solve Schrödinger’s equation outside the potential for E < 0, and keep only
the solution that has the right behavior at infinity and is continuous at x = 0.
Draw the wave function and see how there is a cusp, or a discontinuous change
of slope at x = 0. Calculate the change in slope and equate it to∫ +ε

−ε

(
d2ψ

dx2

)
dx

(where ε is infinitesimal) determined from Schrödinger’s equation.
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Exercise 5.2.4. Consider a particle of mass m in the state |n⟩ of a box of
length L. Find the force F = −∂E/∂L encountered when the walls are slowly
pushed in, assuming the particle remains in the nth state of the box as its size
changes. Consider a classical particle of energy En in this box. Find its velocity,
the frequency of collision on a given wall, the momentum transfer per collision,
and hence the average force. Compare it to −∂E/∂L computed above.

Exercise 5.2.5. If the box extends from x = 0 to L (instead of −L/2 to L/2)
show that ψn(x) = (2/L)1/2 sin(nπx/L), n = 1, 2, . . . ,∞ and En = ℏ2π2n2/2mL2.

Exercise 5.2.6. Square Well Potential. Consider a particle in a square well
potential:

V (x) =

{
0, |x| ⩽ a

V0, |x| ⩾ a

Since when V0 → ∞, we have a box, let us guess what the lowering of the
walls does to the states. First of all, all the bound states (which alone we are
interested in), will have E ≤ V0. Second, the wave functions of the low-lying
levels will look like those of the particle in a box, with the obvious difference
that ψ will not vanish at the walls but instead spill out with an exponential tail.
The eigenfunctions will still be even, odd, even, etc.

(1) Show that the even solutions have energies that satisfy the transcendental
equation

k tan ka = κ (5.2.23)
while the odd ones will have energies that satisfy

k cot ka = −κ (5.2.24)

where k and iκ are the real and complex wave numbers inside and outside the
well, respectively. Note that k and κ are related by

k2 + κ2 = 2mV0/ℏ2 (5.2.25)

Verify that as V0 tends to ∞, we regain the levels in the box.
(2) Equations (5.2.23) and (5.2.24) must be solved graphically. In the (α =

ka, β = κa) plane, imagine a circle that obeys Eq. (5.2.25). The bound states
are then given by the intersection of the curve α tanα = β or α cotα = −β with
the circle. (Remember α and β are positive.)

(3) Show that there is always one even solution and that there is no odd so-
lution unless V0 ⩾ ℏ2π2/8ma2. What is E when V0 just meets this requirement?
Note that the general result from Exercise 5.2.2b holds.

5.3 The Continuity Equation for Probability
Exercise 5.3.1. Consider the case where V = Vr − iVi, where the imaginary
part Vi is a constant. Is the Hamiltonian Hermitian? Go through the derivation
of the continuity equation and show that the total probability for finding the
particle decreases exponentially as e−2Vit/ℏ. Such complex potentials are used
to describe processes in which particles are absorbed by a sink.

Exercise 5.3.2. Convince yourself that if ψ = cψ̃, where c is constant (real or
complex) and ψ̃ is real, the corresponding j vanishes.
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Exercise 5.3.3. Consider

ψp =

(
1

2πℏ

)3/2

ei(p·r)/ℏ

Find j and P and compare the relation between them to the electromagnetic
equation j = ρv, v being the velocity. Since ρ and j are constant, note that the
continuity Eq. (5.3.7) is trivially satisfied.

Exercise 5.3.4. Consider ψ = Aeipx/ℏ+Be−ipx/ℏ in one dimension. Show that
j =

(
|A|2 − |B|2

)
p/m. The absence of cross terms between the right- and left-

moving pieces in ψ allows us to associate the two parts of j with corresponding
parts of ψ.

5.4 The Single-Step Potential: A Problem in
Scattering

Exercise 5.4.1. Evaluate the third piece in Eq. (5.416) and compare the
resulting T with Eq. (5.4.21). [Hint: Expand the factor

(
k21 − 2mV0/ℏ2

)1/2
near k1 = k0, keeping just the first derivative in the Taylor series.]

Exercise 5.4.2. (a) Calculate R and T for scattering of a potential V (x) =
V0aδ(x). (b) Do the same for the case V = 0 for |x| > a and V = V0 for |x| < a.
Assume that the energy is positive but less than V0.

Exercise 5.4.3. Consider a particle subject to a constant force f in one dimen-
sion. Solve for the propagator in momentum space and get

U (p, t; p′, 0) = δ (p− p′ − ft) ei(p
′3−p3)/6mℏf

Transform back to coordinate space and obtain

U (x, t;x′, 0) =
( m

2πℏit

)1/2
exp

{
i

ℏ

[
m (x− x′)

2

2t
+

1

2
ft (x+ x′)− f2t3

24m

]}

[Hint: Normalize ψE(p) such that ⟨E | E′⟩ = δ (E − E′). Note that E is not
restricted to be positive.]

5.5 The Double-Slit Experiment

5.6 Some Theorems
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The Classical Limit
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