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Preface
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ciples of Quantum Mechanics by R. Shankar. It is designed to provide clear
and comprehensive solutions to the problems presented in the original work,
aiding students, researchers, and enthusiasts in their pursuit of understanding
quantum mechanics.

Quantum mechanics, as a cornerstone of modern physics, challenges intu-
ition with its abstract principles and intricate mathematical framework. The
problems in R. Shankar’s text are carefully crafted to deepen comprehension
and enhance problem-solving skills. This manual seeks to complement that ef-
fort by providing detailed and accessible solutions, bridging the gap between
theoretical concepts and practical application.

This work is created with the intention of supporting readers at all levels,
whether they are delving into quantum mechanics for the first time or revisiting
its concepts with a fresh perspective. While every effort has been made to ensure
the accuracy and clarity of the solutions, mistakes can occasionally occur.

If you identify any errors or have suggestions for improvement, please do not
hesitate to contact me at

liang@xumin.sx.cn
Updates and corrections to this manual will be made available at
https://xumin-liang.net

I hope that this manual serves as a helpful resource, making the journey
through quantum mechanics both engaging and rewarding.
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Chapter 1

Mathematical Introduction

1.1

Linear Vector Spaces: Basics

Exercise 1.1.1. Verify these claims. For the first consider |0) 4+ |0’) and use the
advertised properties of the two null vectors in turn. For the second start with

0) =

(04 1)|V) + | = V). For the third, begin with |V) + (—|V)) =0|V) = |0).

For the last, let |[W) also satisfy |V') 4 |W) = |0). Since |0) is unique, this means
VY + |W) =|V)+|—V). Take it from here.

Solution.

(1)

|0) is unique.
Proof. For an arbitrary state ket |V),

(@) [V)+10) =[V)

(b) V) +10) =1[V)

Set [V) = |0') in (i) = |0") +|0) = [0);

Set |V) = |0) in (ii) = |0) + |0’) = |0); Therefore, by commutativity of
vector addition, we have

[0%) =10) +10) = 0) + [0") = |0)

0[V) =0)
Proof. 1|V) = (1+0)|V) = 1|V) + 0|V}, where 1|V) = |V). Therefore
V) =1V)+0[V)

Since |V') is arbitrary here, compared with the definition of |0), which is
[V) +10) = |V) for any |V), plus |0) is unique, we can conclude that

0[V) = 10).
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@) [=V)=-[V)
Proof. For arbitrary |V),
V) + (=V)) = 0[V) = [0).

By definition of | — V), which is |V) +| — V) = 0, we can conclude that

[ =V)=—IV).
O
(4) | = V) is the unique addtive inverse of |V).
Proof. Suppose there exists another vector |W), satisfying |W) = —|V),
then
V) + W) =[V)—1|V)
=1 -DV)
=0|V)
= 10)
Add | — V) on the both sides, we have
V)+IW)+|=V)=10)+[=V)
W)+ (V) +[=V)=[=-V)
(W) +10) =[-V)
Therefore,
W) =1-V)
O

Exercise 1.1.2. Consider the set of all entities of the form (a,b,c) where the
entries are real numbers. Addition and scalar multiplication are defined as

follows:
(a,b,c)+(d,e, f) = (a+d,b+e,c+ f)

afa, b, c) = (aa, ab, ac).
Write down the null vector and inverse of (a,b,c). Show that vectors of the
form (a,b,1) do not form a vector space.

Solution.

o Null vector of (a,b,c): By definition, for any |V},
V) +10) = V).

Set |0) = (ao,bo,c0), |V) = (a,b,c), where a,b, c are arbitrary numbers.

Then
ao, bOa CO) + (CL, bv C)

(
(ag + a,bg + b,co + )
V)

(a,b,c)
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agt+a=a ag =0
= bo+b=b = bo=0
cpt+c=c co=0

Therefore, the null vector of (a,b, ¢) is (0,0,0).

« Inverse vector of (a, b, c): Suppose the inverse vector of (a,b, c) is (@, b, €).
By definition, -
(a,b,¢) + (a,b,¢) = [0) = (0,0,0)

(a+a,b+b,c+¢) =(0,0,0)

a+a=0 a=—a
= b+b=0 = b=—b
c+c=0 c=—c

Therefore, the inverse vector of (a,b,c) is (—a, —b, —c).
e {(a,b,1)} does not form a vector space since

(a) Tt violates the closure under addition, i.e.
(ala bla 1) + (a27 b27 1) = (al + a27b1 + b27 2) ¢ {(a’7b7 1)}
(b) It violates the closure under scalar multiplication, i.e.

w(ay,by,1) = (way,wby,w) ¢ {(a,b,1)}

as long as w # 1.

(¢) There is no null vector, i.e.

(0,0,0) ¢ {(a,b,1)}.

(d) The inverse does not exist, i.e.

(_a7 _b7 _1) ¢ {(a7 b’ 1)}

Exercise 1.1.3. Do functions that vanish at the end points =0 and x = L
form a vector space? How about periodic functions obeying f(0) = f(L) ? How
about functions that obey f(0) =4 ? If the functions do not qualify, list the
things that go wrong.

Solution.

(1) {f(x)}, f(0) = f(L) =0, form a vector space.

(2) {f(x)}, periodic functions obeying f(0) = f(L), form a vector space. If
you want to prove the property of closure in this problem, please mention
that f(x) + g(z) and af(x) are also periodic functions. That is, f(0) +
9(0) = f(L) + g(L), af (0) = af (L).

(3) {f(x)}, f(0) =4, do not form a vector space, since

(a) éfi(z’),h(w) € {f(x)}, then g(z) +h(x) & {f(x)}, since g(0) +h(0) =
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(b) If g(:zz € {f(z)}, then Ag(z) ¢ {f(x)}, since Ag(0) = 4\ # 4, as long
as A # 1.

(¢) No null vector. g(z) =0 ¢ {f(z)}, since g(0) = 0 # 4.
(d) Hf;le € {f(x)}, then the inverse —g(x) ¢ {f(x)}, since —g(0) =

Exercise 1.1.4. Consider three elements from the vector space of real 2 x 2

matrices:
m=(o o) 2-( 1) B=(3 2)

Are they linearly independent? Support your answer with details. (Notice we
are calling these matrices vectors and using kets to represent them to emphasize
their role as elements of a vector space.)

Solution. Suppose a1|1) + as|2) + a3|3) = 0. We have

0'041+1'042+(—2)'0é3 1'0[1+1'a2—|—(—1)'()¢3 _ 0 0
0'0[1+O’OLQ+O'O£3 0'0[1+1’OLQ+(72)'013 o 0 0

a2—2a3=0
=
041+Oé270[3:()

a1 = —Qs3
=
{ Qo = 20(3
It is not necessary for oy, s and asz to be 0 together. Therefore, |1), |2) and
|3) are linearly dependent.

Exercise 1.1.5. Show that the following row vectors are linearly dependent:
(1,1,0), (1,0,1), and (3,2,1). Show the opposite for (1,1,0),(1,0,1), and
(0,1,1).

Solution. Suppose a;(1,1,0) + a3(1,0,1) + a3(3,2,1) = 0. Then

a] = 2«
a1+ 2a3 =0 ! 3

a2+a3:0

a1 +as +3a3 =0
:> {
Qo = —(Q3

When a3 # 0. a1, as, as can have non-zero values. Therefore, (1,1,0), (1,0,1),
(3,2,1) are linearly dependent.
Suppose «1(1,1,0) + a2(1,0,1) + a3(0,1,1) = 0. Then

ar +as =0 ap =0
art+az3=0 = ag = 0 is the only solution.
as+a3 =0 a3 =0

Therefore, (1,1,0), (1,0,1), (0,1,1) are linearly independent.
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1.2 Inner Product Spaces
1.3 Dual Spaces and the Dirac Notation

Exercise 1.3.1. Form an orthonormal basis in two dimensions starting with
A = 3i+4+4j and B = 2i — 65. Can you generate another orthonormal basis
starting with these two vectors? If so, produce another.

Solution. Using Gram-Schmidt process here, starting from A.

—

A 3i+4f 3: 4z
_ A4 _ 2Ty oy, 2
AT VERE 55

[y

104- 78-
_ 104 78
25 '~ 257
1047 787
o2 ___msionl 4 35
|€b] 1042 78\2 O 5
(55) + (%)

Therefore, the new basis is €; = %z + %j, €y = %i — 35,

Exercise 1.3.2. Show how to go from the basis

3 0 0
= (o] n=[1] =12
0 2 5

to the orthonormal basis

1 0 0
1) =10 12) = | 1/V5 13) = | —=2/V/5
0 2/V/5 1/v/5
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Solution.

o2 (N (i
VT2) VB, 2/V/5

13) = 11T) — ((L | I1))|1) — (2| 11T))|2)
0 1 2 10 0
=(2]-0-{0)—-(0+==+—=)|1/V5
o i) (0
0 0
— (2] =125
) ()
0
— | —2/5
)
, 0
9=l = [ -2/v5
W% \ 15

Exercise 1.3.3. When will this equality

W V)V W)
(W

(V[V)=

be satisfied? Does this agree with your experience with arrows?
Solution. When |V} = C|W), we have
(VIV)=[CHW | W) = |CPIW|?

Also
WVIV W) =(CW [ W)(CW | W)
= [CHW [ W)W | W)
=[CPw|*
Hence, W VYV | )
W | VWV |W
VIv) = S

When two arrows are parallel or anti-parallel with each other, the square of
their inner product equals to the product of their norms.
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Exercise 1.3.4. Prove the triangle inequality starting with |V + W|2. You
must use Re(V|W) < |[(V|W)| and the Schwarz inequality. Show that the final
inequality becomes an equality only if |V) = a|WW) where a is a real positive
scalar.

Solution. Re(V | W) < (V| W)| < |V||W]
= Re(V | W) <2]V||W|
Add |V|? + |W|? to both sides of the inequality above, we have
(VI V) +2Re(V [ W) + (W | W) < [V]* + [W]* + 2|V |[W]|
LHS=(V |V)+ (V| W)+ (W |V)+ (W | W)
=(V+W|V+W)
=|V+Wwp?
RHS = (|V] + |[W|)*

Therefore,
V+WP2<(V]+W))?

= |[V+W| V|4 W] (the triangular inequality)

Attention: We are supposed to prove the equality holds only if |V) = «|W),
where « is a real number.
The equality holds only if the following two equalities hold:

(a) (V[ W) =|V|[W]|

(b) Re(V [ W) = [(V | W)
From the proof process of the Schwarz inequality in Shankar, we know that
equality (a) holds only if
Wwlv)

(W2

12) = V) — W) =0

which means |V) must be able to expressed as a|W), where « is a number. To
prove that o must be real, we substitude |V) = «|W) into equality (b) above.
(VW) =aX(V]V)

To satisfy equality (b), (V | W) must be real. Since (V | V) is real, * must be
real. Therefore, a must be a real number.

1.4 Subspaces

Exercise 1.4.1. In a space V", prove that the set of all vectors { ’Vj> , Vf> . .},

orthogonal to any |V') # |0), form a subspace V1.

Solution. Given a vector space V™, one can start with an arbitrary vector
|V} # 0 and construct n— 1 other vectors orthogonal to this |[V') through Gram-
Schmidt process. Since these n — 1 vectors are linear independent, they span a
V7~1 subspace. Now we prove that this subspace V*~! is the set of all vectors
orthogonal to |V).
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(1) Every vector in V"~ is orthogonal to |V'): Since every vector in V*~! can
be expressed as a linear combination of the n — 1 vectors we constructed

n—1 n—1
above |[V1) = > «o|Vi), and (V | V) = > a(V | V;) = 0, because
i=1 i=1

V| Viy=0 forzgach V.

(2) Every vector in V" but outside V"~ is not orthogonal to |V): Since this
kind of vectors can be expressed as |W) = «|V) —&—éil «;|V;), where o # 0.
Therefore (V | W) = a(V | V) = a #£0. =

Exercise 1.4.2. Suppose Vi'* and V52 are two subspaces such that any element
of V7 is orthogonal to any element of V5. Show that the dimensionality of V; &V,
is nq + ne. (Hint: Theorem 4.)

Solution. Since V]' and V5? are two subspace orthogonal to each other, we
can take the ny basis vectors of Vi* and the ny basis vectors of V52, and put
them together. Because these n +nq vectors are orthogonal to each other, they
can span a V172 subspace. We now prove that this V1772 is nothing but the
Vi1 @ Vs.

(1) Every vector in V"2 is in Vi @ Vy:

=1

ni no
Since each vector in V"1+"2 can be expressed as |U) = > a;|Vi)+ Y 5;|W;),
j=1
where {|V;)}, {|W;)} are basis vectors of V; and Vj respectively. Notice

ni n2

that ) «;|V;) is a vector in Vq, and > b;|W;) is a vector in Vy. Therefore
i=1 j=1

|U) can be expressed as a combination of vectors from V; and V. Accord-

ing to the definition of V; @ V5 (Definition 12 in Shankar), |U) € V; @ Vs.

(2) Every vector in Vi @ Vy is in V1H72:
Every vector in Vi @ Vy can be expressed as |Z) = C1|Z1) + C2|Z2),
where |Z1) € VI, |Z2) € V2. Therefore, |Z1) = zl:piﬂfi), and |Zs) =
i=1

n2 ni n2
Z qj|WJ> Thus, |Z> = Z Clp7|‘/z> + Z ng]'|Wj>, which lies in Vn1+n2.
J=1 i=1 J=1

Therefore, by theorem 4 in Shankar, there are n; + ny orthogonal vectors in
V1 & Vs, so the dimension of Vi & Vg is ny + no.

1.5 Linear Operators

1.6 Matrix Elements of Linear Operators

Exercise 1.6.1. An operator (2 is given by the matrix
0 0 1
1 0 0
010

What is its action?
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Solution. To see Q’s action, let’s act on basis vectors:

0 0 1 1 0
Quy=(1 0 offo]=(1]=12
01 0 0 0
0 0 1 0 0
Q=1 0 o] [1]=[0] =3
01 0 0 1
0 0 1 0 1
Q3y=[1 0 o] [o]=[0] =)
01 0 1 0

This is a cyclic permutation of the three basis vectors.
It is equivalent to rotation of the coordinate axis along (1,1,1) by 2%

Exercise 1.6.2. Given ) and A are Hermitian what can you say about (1) QA;
(2) QA + AQ; (3) [Q,A]; and (4) i[Q,A] ?

Solution.
(1) Not Hermitian: (QA)F = ATQT = AQ # QA
(2) Hermitian:

(QA + AQ)T = (QA)T + (AQ)T
= ATQT + QAT
=AQ+ QA
= QA+ AQ

(3) Anti-Hermitian:
[, A" = (QA — AQ)'
= (QA)T — (AQ)T
= ATQT — QT AT
=AQ - QA
=—(QA - AQ)
= _[Qv A}
(4) Hermitian:
([, A" = 1[0, AT
=—i- (_ [QaA])
= [Q, A]

Exercise 1.6.3. Show that a product of unitary operator is unitary.
Solution. Suppose Uy, Us are unitary, which means that

Ui, =1=UlU,
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Therefore,
(U (hUy) = Uluiy U,

= U3 (U{U1)Us
= Uj1U,
= UlU,
=1
Hence a product of unitary operator is unitary.

Exercise 1.6.4. It is assumed that you know (1) what a determinant is, (2) that
det QT = det Q (T denotes transpose), (3) that the determinant of a product
of matrices is the product of the determinants. [If you do not, verify these
properties for a two-dimensional case

_(a B
- (7 5)
with det Q = (ad — B7).] Prove that the determinant of a unitary matrix is a

complex number of unit modulus.
Solution. Suppose U is the unitary matrix, which means that it satisfies
UtU =1
Take determinant of the both sides, we get
det(UTU) = det(I)
det(UT) det(U) = 1
det((U™)*) det(U) = 1
(det(U™))*det(U) =1
(det(U))*det(U) =1
| det(U)]* =1
|det(U)| =1
Therefore, det(U) is a complex number of unit modulus.

Exercise 1.6.5. Verify that R (%wi) is unitary (orthogonal) by examining its
matrix.

Solution. We know from Example 1.6.1,

1 1 0 O
01 0
Therefore,
1 t 1 1 0 O 1 0 O 1 00
R(27Ti) R<27Ti>: 0 0 1 0 0 -1|=(0 1 0=1
0 -1 0 01 0 0 0 1

Hence, R( m) is unitary.



CHAPTER 1. MATHEMATICAL INTRODUCTION 11

Exercise 1.6.6. Verify that the following matrices are unitary:

1 /1 i L/1+1 1-i
21/2\i 1)7 2\1-1 1+4i
Verify that the determinant is of the form e in each case. Are any of the above
matrices Hermitian?

Solution.

1 i), . .
21% (i 1 1s unitary, since

LliT_Lli_ll—ili_EQO_H
21/2 \i 1 2t/2\i 1) 2\—-i 1/J\i 1) 2\0 2/

. 1 1), ~ .
The determinant of 21% (i i) is of e’ form, since

2
1 i 1 .
det {21/2 (} i)] = <21/2> (1-1-i) = 1 = €', where § = 2kn for k € Z

1 iy, . .
L (i 1) is not Hermitian, since

21/2
1o/1oi\" 1 /1 L L (1
oz2\i 1) oz - 1) 79201

ool =i is unitary, since
21— 144/ BURAY

T(t+i 1-i\" T/14i 11\ 1 /1-i 141)(1+i 1-i
2\1—i 1+4i 2\1—i 1+4+i) 4\1+4+i 1—-i/\1—-i 1+i
_1(1 0
T 4\0 4
=1
. 1+1 1-—1). : .
1 N i0 .
The determinant of 3 (1_1 1+i> is of €' form, since

an LN = (5) 0=

1+1 1-1
1—-i 141

T(t+i 1-i\' _1/1-1 1+i L L1 1
2\1—1 1+i) ~2\1+i 1-i/7 2\1—-i 1+i

where ¢ = 2km + 7 for k € Z. % ( ) is not Hermitian, since
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1.7 Active and Passive Transformations

Exercise 1.7.1. The trace of a matrix is defined to be the sum of its diagonal

matrix elements
i

Show that
(1) Tr(QA) = Tr(AQ).
(2) Tr(QA0) = Tr(AIQ) = Tr(0QA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i) —
Uli). [Equivalently, show TrQ = Tr (UTQU) ]

Solution.

(1) Tr(QA) = Q)i = X5 Ay = $ 5 A0 = Y(AQ); = Tr(AQ).

i J

(2)
% J k

%

=D DD Apbrii; =Y (AQ);5 = Tr(AGQ)
j ki

J

= Z Z Z OriQij A = Z(GQA)kk = Tr(ANA)
kot k

(3) Tr(UTQU) = Te(QUUT) = Tr(QI) = Tr(Q).

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a
unitary change of basis. [Equivalently show detQ = det (UTQU)) ]

Solution.
det (UTQU) = det UT det Qdet U

= det Q (det Ut det U)
= det Qdet (UTU)
=detQ-1

= det Q.

1.8 The Eigenvalue Problem

Exercise 1.8.1.

(1) Find the eigenvalues and normalized eigenvectors of the matrix

N W
= O =

1
Q=10
0

(2) Is the matrix Hermitian? Are the eigenvectors orthogonal?
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Solution.

(1) To find the eigenvalues and normalized eigenvectors of the matrix €, we
can compute the characteristic equation

1-w 3 1
det(Q—wl)=| 0 2—w 0 |=1-w2-wl@d-w)=0
0 1 4—-w

So the eigenvalues are
w=1,2,4

The eigenvectors corresponding eigenvalues are

0 3 1 1 1
w=1: {0 1 0] (fz2] =0 = |Jw=1)=|0
01 3 T3 0
-1 3 1 T 1 5
w=2:[0 0 0f[z]=0 = jw=2=— | 2
0 1 2/ \us 30 \ 1
-3 3 1 1 1 1
w=4: [0 -2 0 z2 | =0 = |Jw=4)=—10
1 0/ \us 103

(2) Matrix € is not Hermitian, since

1
ot =13
1

SN O

0
o] #£¢0
4

The eigenvectors are not orthogonal, since

5 2 -1 v30
w=1|lw=2)=1x +0 x +0 x = 0
< | ) V30 v 30 v 30 6 7
1 3 v 10

==
(Ww=2|w=4) = x 42 -
V30 V10 V30 V30 V10

Exercise 1.8.2. Consider the matrix

(1) Is it Hermitian?
(2) Find its eigenvalues and eigenvectors.
(3) Verify that UTQU is diagonal, U being the matrix of eigenvectors of .

Solution.
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(1) Matrix € is Hermitian since
Q=0

14

(2) To find the eigenvalues and eigenvectors of the matrix 2, we can compute

the characteristic equation

—w 0 1
det(Q—wl)=]0 —w 0|=-—
1 0 —w
Therefore, eigenvalues are
w=-1,0,1

The eigenvectors corresponding to eigenvalues are

10 1\ [z e
w=-1 01 0fJ[a2] =0 = |Jw=-1)=—10
1 0 1) \u3 2\
0 0 1 X 0
w=0:10 0 0] |a2| =0 = |Jw=0)=|1
1 00 T3 0
-1 0 1 T 1 1
w=1 0 -1 0 2| =0 = |Jw=1)=—10
1 0 -1 I3 \/i 1
(3) If U is the matrix of eigenvectors of 2, then
1 1 1 1
Yz 7Y 7
u=| 0 1 0 ut=(0 1 0
-1 9 4 1 9 1
V2 V2 V2 V2
We can compute
1 1 1 1
VAN L U AN v R
vtau=(0 1 0 0 0 0 0 1 0
1 1 1 1
7 0 7 1 00 -7 0 7
-1 0 L 1 0o L
V2 V2 V2 V2
= 0 0 O 0 1 0
19 o)\ o L
V2 V2 V2 V2
-1 0 0
= 0 0 O
0 0 1

This is a diagonal matrix.
Exercise 1.8.3. Consider the Hermitian matrix

0
3
-1

0
-1

2
1
0 3
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(1) Show that w1 =wy =1; w3 = 2.
(2) Show that |w = 2) is any vector of the form

1 0

(2a2)1/2
(3) Show that the w = 1 eigenspace contains all vectors of the form

1 b

(1% + 22)1/2

either by feeding w = 1 into the equations or by requiring that the w =1
eigenspace be orthogonal to |w = 2).

Solution.

(1) The characteristic equation is

det(Q—wl)=| 0 % —w -

o) e )
(1-w) l(;—w) —] =(1-w)(w?—3w+2)

=(l-w(w-1)(w-2)=0

Then the eigenvalues are
w1 = W = 1 w3z = 2

(2) To get the eigenvector corresponding to eigenvalue w = 2, we need to solve
the equation

-1 0 0 T
o -1 -1 x; =0 = { =
0 _; _% T3 To + I3 = 0
Set o = a, we have x3 = —a. Therefore,
w=z= [
w=2)= a
V2a? —a
(3) Forw=1:
0 O 0 T
0 %1 —1% X9 = 0
0 -3 3/ \#3
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x1 is arbitrary, set x1 = b. 9 —2x3 = 0, set x93 = ¢, then 3 = ¢. Therefore,
the eigenvector corresponding w = 1 is of the form

1
—— | ¢
Vb2 4+ 2c2 c

w=1)=
Exercise 1.8.4. An arbitrary n X n matrix need not have n eigenvectors. Con-

sider as an example
4 1
°= (4 )

(2) By feeding in this value show we get only one eigenvector of the form

()

We cannot find another one that is linear independent.

(1) Show that w; = wqy = 3.

Solution.

(1) The characteristic equation is

4—w 1

det(QwH)‘ 1 9—w

‘ =4-w@2-w+l=w?—6w+9=0
Thus the eigenvalues are
W1 = Wy = 3

(2) By feeding this eigenvalue w = 3, we get the equation

1 1 r1\ o
<_1 _1) (l‘g) =0 = 1+ 20 =0

Set x1 = a, we have o = —a. Therefore, the eigenvector is of the form

1 a )
w=3) =—— .
w=3=— (2,
This is the only eigenvector we can find.

Exercise 1.8.5. Consider the matrix
q_ [ cos 6 sinf
~ \—sinf cosf
1) Show that it is unitary.

)

2) Show that its eigenvalues are ! and e=.
)
)

3) Find the corresponding eigenvectors; show that they are orthogonal.

(
(
(
(4) Verify that UTQU = (diagonal matrix), where U is the matrix of eigen-
vectors of Q.
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Solution.

(1) Matrix © is unitary, since

aOr0 — cosf) —sinf cosf siné
~ \sinf cos@ —sinf cos@

cos? 0 + sin® 6 cos 0 sin @ — sin 0 cos 9)

(Sin 0 cos — cos 0 sin 6 sin? 6 + cos? 6
1 0
0 1
I

(2) Solve the characteristic equation

cost —w sin 6

_ 2 _
—sinf  cosf—w| ¥ 2weost +1=0

det(Q — wl) =

By Euler’s formula, we get the eigenvalues

w=cosf +isinf = e*?

(3) By feeding this eigenvalue, we get the equations

T ising sinf\ (x1) . _
w=e oo (sin@ isin@) (xg) =0 = mm+r=0

IRV —isinf  sinf 1\ . _
w=es <—sin9 —isin9> <x2) =0 = izy 422 =0

Thus the corresponding eigenvectors are

=)
=)

They are orthogonal since
—i6 i 1 .
(w=e \w:e>:§(1 i)

(4) The matrix of eigenvectors of  is

4 1
v (4 %)
Vz2 V2

17
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Then

UrQu =

-

\/Li cosf sind 1. %
—ﬁ —sinf cos6 v #2

1

i

vz

%(COSQ —isin#) %(sin@ + icos6‘)> (
i (

1

V2

-k
Sk
SN——

(cosf +isinf) L (sinf —icosh)

4 3)

N

S

s}
Y
o, |
L
N—————
|
SR
S-S

is diagonal.
Exercise 1.8.6.
(1) We have seen that the determinant of a matrix is unchanged under a

unitary change of basis. Argue now that

n
det Q = product of eigenvalues of Q) = H wj

i=1

for a Hermitian or unitary €.

(2) Using the invariance of the trace under the same transformation, show
that
n
TrQ = Z Ws;
i=1

Solution.

(1) Suppose U is the unitary matrix that transforms 2 into a diagonal matrix
D with s eigenvalues w; on its diagonal. Then

det Q = det(UTQU) = det D = [ J wi
=1
(2) By using the same transformation, we have
TrQ=Te(UIQU) =TrD =) w;
=1

Exercise 1.8.7. By using the results on the trace and determinant from the
last problem, show that the eigenvalues of the matrix

°= (s )

are 3 and —1. Verify this by explicit computation. Note that the Hermitian
nature of the matrix is an essential ingredient.
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Solution. According to Exercise 1.8.6, we have

wi Xwy=detQ=1x1-2x2=-3
wptwr=14+1=2

w1:—1
w2:3

For verification, we can calculate the characteristic equation

Solving the equation, we get

det(Q—wH)z’l_w 2

) 1_w’:(1—w)2—4:(1—w+2)(1—w—2):0

w1:—1
w2:3

Exercise 1.8.8. Consider Hermitian matrices M, M2, M3, M* that obey

We can get the eigenvalues

MM+ MIM =269T, 4,j=1,...,4

(1) Show that the eigenvalues of M* are +1. (Hint: go to the eigenbasis of
M, and use the equation for i = j.)

(2) By considering the relation
MM = —-M'M* fori#j
show that M? are traceless. [Hint: Tr(ACB) = Tr(CBA).]
(3) Show that they cannot be odd-dimensional matrices.
Solution.

(1) Start with equation o o -
M'M? + M M" = 2691

Take i = 7, we get o
M'M'=1

Apply MM? to eigenvector |w) of M?, we have
MM |w) = M (w|w)) = w?|w)
M'M'|w) = Tw) = |w)

Therefore,
wr=1

w==1
(2) From the relation
MM = —MIM*
MIM'M? = —MIMIM" = —M*
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We can take the trace of M* to get
Tr M* = Tr(—MI M*M?)

= —Tr(M M M)
= — Tr(M*'MIM7)
= — Tr(M'I)
= —Tr(M")
=0

M is traceless.

(3) According to 1.8.6,
TrM' = w
k=1

where n is the dimension of the matrix. Since wy, = £1, Tr M can be zero

only if n is even!.

Exercise 1.8.9. A collection of masses m,, located at r, and rotating with
angular velocity w around a common axis has an angular momentum

1=Zma (roa X Vq)

where v, = w X ry is the velocity of m,. By using the identity
Ax(BxC)=B(A-C)-—C(A -B)

show that each Cartesian component [; of 1 is given by
lz‘ = Z Mijwj
J

where
Mij = Zma [Tiéij — (ra); (ra)j}
(03
or in Dirac notation
) = Mlw)
(1) Will the angular momentum and angular velocity always be parallel?
(2) Show that the moment of inertia matrix M;; is Hermitian.

(3) Argue now that there exist three directions for w such that 1 and w will
be parallel. How are these directions to be found?

(4) Consider the moment of inertia matrix of a sphere. Due to the complete
symmetry of the sphere, it is clear that every direction is its eigendirection
for rotation. What does this say about the three eigenvalues of the matrix
M?

1The sum of an odd number of odd numbers is still odd, and cannot be zero.
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Solution. Start from the angular momentum

1= Zmara X (W X ry)
— za:ma[w(ra ‘To) — a(Tq - w)]
= ima[w ri —14(ry - w)]
Writing in components, we get
= malwir? — (ka)i (o - @)
= Zma Jwirs = (Ta)i Y (ra)jwj]

= Zma[z 5ijwj TZ — (I'a)i Z(ra)jwj]

= Z Zma[ri bij — (ra)i (ra)jlw;
= ZMijwj‘

where M;; = 3" ma[r? §;j — (ra)i (ta);]. Or in Dirac notation,
) = Mlw)

(1) No. The angular momentum and angular velocity are not parallel unless
|w) is an eigenvector of M.

(2) M3 = (3, malra 0ji—(ra)j (ra)d)* = X, malra 6ij—(ra)i (ta);] = Mij.

(3) Since M is Hermitian, we can always find three eigenvectors which are
orthogonal to each other by solving the eigen-problem M|w) = w|w). And
these three eigenvectors denote the three directions for w we want to find
in the 3-dimensional Euclidean space.

(4) The complete symmetry of sphere means all directions are equivalent
eigendirections. Therefore, the eigenvalues are degenerate.

Exercise 1.8.10. By considering the commutator, show that the following
Hermitian matrices may be simultaneously diagonalized. Find the eigenvectors
common to both and verify that under a unitary transformation to this basis,
both matrices are diagonalized.

101 2 1 1
Q=(0 0 o], A=[1 0o -1
101 1 -1 2

Since 2 is degenerate and A is not, you must be prudent in deciding which
matrix dictates the choice of basis.
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Solution. Since the two Hermitian matrices commute

[Q,A] = QA — AQ

1 0 1\ /2 1 1 2 1 1\ /1 01
=|0 0 O 1 0 —-1|]—-(1 0 -1 0 0 O
1 0 1 1 -1 2 1 -1 2 1 01
3 0 3 3 0 3
=0 0 0)—-10 0 O
3 0 3 3 0 3
=0

They can be diagonalized simultaneously. We choose A’s characteristic equation

2-x 1 1
det(A—XI)=| 1 A 1 |=XA+1)2-NMNA=-3)=0
1 -1 2=
The eigenvalues are
A=-1,2,3

Then the eigenvectors corresponding the eigenvalues are

3 1 1 T 1 1
A=-1 1 1 1| [a2|=0 = P=-1)=—=[-2
1 -1 3 T3 6 \_1
A=2 1 =2 -1 [|z|=0 = p=2)=—11
1 -1 0 T3 3 1
-1 1 1 T 1 1
A=3: L3 1) |e =0 = P=3)=—7|0
1

1 -1 -1/ \as

1 1 1
NG V3 V2
U = _ 2 1 0
Ve V3 V2

To verify Q2 and A are simultanelously diagonalized:

1 2 1 1 1 1
; R C W e W Y RV RE
e Nl B R B B T
n oYz V% TV v
1 1 1
00 0\(% v v
=0 0 o -% 55 0
1 11
V2 0 V2 \-F -5 %
0 0 O
=(0 0 O
0 0 2
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1 2 1 1 1 1
; I C I G W Y VR
e Il B Gl B R
VR - % TV v
1 2 1 11 1
V6 6 V6 V6 VB V2
_ 2 2 22 T
I O R N I VI
nw Y B/ \"nw B ow
-1 0 0
=10 2 0
0 0 3

Exercise 1.8.11. Consider the coupled mass problem discussed above.

(1) Given that the initial state is |1), in which the first mass is displaced
by unity and the second is left alone, calculate |1(¢)) by following the
algorithm.

(2) Compare your result with that following from Eq. (1.8.39).
Solution.

(1) Equation of motion

& e (T fi)(ﬂﬁ)
Az \za) — \ £ -2k ) \ay

Set
‘_Qk e % 0
k _ 2k 2
m m Jr w
we have

3k [k
w1 = —_— Wo = —
m m

The corresponding eigenvectors are

=75 () =5 ()

Then the matrix of eigenvectors is

26k 2
—= £ —w 0
()= (60 L)
In eigenbasis,

)= ) - Loz o
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_ (=(0)) _ (1
0= (o) = (o
We first transform it into eigenbasis
1 1 1
() C)- (2 D)0
In the eigenbasis, the state evolves according to (x).
xr(t) B % coswit
xrr(t)) % cos wayt
Then we transform it back to the original basis:
t) y(t)
1(t 2 A
o) = (540) =2 (210
L £ coswit
<\/§1 \(> (f COS wat
V2 V2 V2 2
% S 4 / 3k t —i— 5 COS 4 /& ot
ficos Tnt+§cos\/ﬁt

(2) By subsitituting <51E8§> = (é) in equation (1.8.39), we can get the
2

In this problem,

~

()

same solution:

(ml(t)) B %COS %t—i— %COS\/%t

T2 (t) —%cos %t—i—%cos\/%t

Exercise 1.8.12. Consider once again the problem discussed in the previous
example.

(1) Assuming that
&) = Q)
has a solution
() = U (#)[(0))
find the differential equation satisfied by U(t). Use the fact that |2(0)) is

arbitrary.

(2) Assuming (as is the case) that Q and U can be simultaneously diagonal-
ized, solve for the elements of the matrix U in this common basis and
regain Eq. (1.8.43). Assume |%(0)) = 0.

Solution.
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(1) Assuming that
|E(2)) = Qfa(t))
has a solution
|=(t)) = U(t)|=(0))
Then we can get
2
de?

(i - ﬂ) U(t)[2(0)) = 0

U(#)]2(0)) = QU(#)|x(0))

Since |z(0)) is arbitrary, we get the differential equation

d2
—Ut) - QU() =
U0~ QU(0) = 0
1 1
(2) From Exercise 1.8.11, we know the A = ‘/% ‘{5
V2 V2

), and therefore, it can also diagonalize U.

In this common basis, we have

(Uu(t) 0 ) B <w% 0 ) (Un(t) 0 ) 0
0 Uxn(t) 0 —w? 0 Uxn(t)
U1 (t) + ?Up1 (t) = 0
{Uzg(t) + wilss(t) =0
{UH = Aj coswit + By sinwit
Usy = Ag coswat + By sinwot
Then

#(0)) = SU}(0)] [#(0)) = 0

t=0

Since |z(0)) is arbitrary, we have

o~ (4w0)
d

Suw)

=0
dt

t=0

which means . .
U11(0) = Ux2(0) =0

By =By=0

To satisfy that U is unitary, we have

Al =Ay=1

_ [coswit 0
U_( 0 cosw2t>

which is the same as equation (1.8.43).

Therefore,

25

) can diagonalize
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1.9 Functions of Operators and Related Con-
cepts

Exercise 1.9.1. We know that the series
o0
fla)=" "
n=0

may be equated to the function f(x) = (1 —x)~! if |z| < 1. By going to the
eigenbasis, examine when the ¢ number power series

f=>3 o
n=0

of a Hermitian operator 2 may be identified with (1 — Q)~*.

Solution. In the eigenbasis,

w1
w2
Q =
Wm
where w; are eigenvalues.
o0
n
> wi 1
oo n=0 1—wq 1
() = Q" — . = - -
@=> : : 1-0Q
n=0 ) 1
> o
n=0

The third equality holds if and only if |w;| < 1 for ¢ = 1,...,m. Therefore, f()
can be defined as ﬁ if and only if the absolute value of each of {2’s eigenvalues
is less than 1.

Exercise 1.9.2. If H is a Hermitian operator, show that U = e is unitary.

(Notice the analogy with ¢ numbers: if 6 is real, u = ¢ is a number of unit
modulus.)

Solution. Since H is Hermitian, it satisfies
H =H

We can compute
Ut = ()t = o iH _ o—iH

Then? o o
UTU — eleelH — e71H+1H =1

Therefore U is unitary.

2The second equality holds only for commuting operators.
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Exercise 1.9.3. For the case above, show that det U = ' T"#

Solution. In the eigenbasis of H,

! ieq
n=0 " e
U = eiH = =
i (i)™ olem
n!

n=0

where €1, ..., €, are eigenvalues of H, i.e.
€1
H =
€m

Therefore,

Ui 12(—:
detU:Hele‘—el 1:eiTrH

1.10 Generalization to Infinite Dimensions

Exercise 1.10.1. Show that d(az) = §(z)/|al. [Consider [d(az)d(ax). Re-
member that §(z) = §(—z).]

Solution. Since §(z) = §(—x), we have

d(azx) = §(|alx)

Therefore,
/ (az)dx —/ 0(|a|z)dx —/ d(Jalx) - (|a|ac)
= ||/ 0(Jalx) d(|a|x) (change |a|x to x)
a — 00
1 /Oo
= — O(x)dx
al ] "
Thus,

d(ax) = 6(x)/|al
Exercise 1.10.2. Show that
Z e
|df/da;]
where z; are the zeros of f(x). Hint: Where does §(f(x)) blow up? Expand
f(x) near such points in a Taylor series, keeping the first nonzero term.
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Solution. Expand f(x) around z;, where f(z;) = 0:

Fa) = o) + P —a) + 5 ") =2+
=0+ f'(z:) (@ — z;) + O(x — :)°]
~ @) o~ )

Introduce a test function g(x),?

oo x;+e
/ g(@)6(f@)dr = 3 / o) 8(f(2)) dz

— 0 P i—€

x;+e€
= Z/xi_e g(x)d <j§ -

7

zite T — Ty
=3 [ g A=

xT;—€

i

Therefore,
=2 FE i xl
|/

Exercise 1.10.3. Consider the theta function 6(x — z’) which vanishes if =

is negative and equals 1 if z — 2’ is positive. Show that §(z —2') = L 0(z — =

Solution. Introduce a test function* g(z), we have

h g(z) it9(x —2')dz = b df(xz — ')
d —o0

oo x

=0(x—12)g / Oz — 2")g (x)dx
=1-g(o0) - 09( — 00g°g ()da

= g(00) — [g(o0) — 9(0)]

=9(0)

Therefore,

d
@G(x — ') = §(x)

Exercise 1.10.4. A string is displaced as follows at ¢t =0 :

2zh L
¢(m,0) = T, O Z’ 5
2h L
=L - = L
L( x)? 2 x

3We use the Exercise 1.10.1 at the last equality.
4g(—o0) and g(oo) are finite

28

l).
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Show that

(x,t) = i sin <$) COS Wyt - <7T28:;2) sin (%)

m=1

Solution. We start from equation (1.10.55)
Z|m (m | ¥(0)) cos wt, wm:m

Then

o0

Yla,t) = (x| p(1) = D (@ | m)(m | $(0)) coswmt

in=1

From equation (1.10.55), we have

(] m) = () = (L)Qsin i

Therefore,

3
=
Il
h
h
/

L L mn
2h L mmx 2h L /é mﬂxd
=— — . —xcCos _ 0S x
L mrw L |, L mrn J, L

2h L L MmT
— _ 9. —
h 7rco 7, T mw/ xd cos
2
o2hL  mm  2hL 2h L mrz|® 2h /L mr
= ——C0S—— — —— COSMT + — - — T COS - — cos —dx
mm 2 mm L mn L mm JL

2hL  mm_2hL oh L . mmzl|F
~r /7/+a7ﬁ/ 7*%'%SIHT

RL  mm 2h [ L oh [ L\? . mr
= —COS — — — _— smm7r—|—— —_— sin ——
mm 2 L \mrn L \mm

=0
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Then

%) 1 1 2
2?2 2\2 4h ( L
P(z,t) = Z (L) sin m;rx . <L> T <m77) sin%coswmt

30



Chapter 2

Review of Classical
Mechanics

2.1 The Principle of Least Action and Lagrangian
Mechanics

Exercise 2.1.1. Consider the following system, called a harmonic oscillator.
The block has a mass m and lies on a frictionless surface. The spring has a force
constant k. Write the Lagrangian and get the equation of motion.

Solution. The kinetic energy and potential energy are

T = ~mi?
2

1
V= 5]@3:2

Then the Lagrangian is

1 1
$:T—V:§m9'c2—§kx2

We can compute

0.8

—— =mz
ox

0L
o - ke

Therefore, the Euler-Lagrange equation is
4 (o) oz
dt \ 0% or

The equation of motion is
mi + kx =0

Exercise 2.1.2. Do the same for the coupled-mass problem discussed at the
end of Section 1.8. Compare the equations of motion with Eqgs. (1.8.24) and
(1.8.25).

31
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Solution. The kinetic energy and potential energy of the system are

1 1
T = —mi? + —mi?

2 2
1 1 1
V= 5kaz2 + §k‘($(}2 —x1)? + ikzx%

Then the Lagrangian is
1
L=T-V= im(:icf +42) — k(2? — 2129 + 23)

e The Euler-Lagrange equation of 1:

% =ma

iy !

% = —2kxq + kxo
8$1

a(ozy oz
de 61‘1 3131 B

We get equation of motion

mx, + 2kx1 — kxo =0

2k k
il = ——1 + —22 (21)
m m

e The Euler-Lagrange equation of 2:

oz
oy 2
% = kl’l — 2]€£L'2
8.1‘1

A (92N oz

de 8;&2 8{E2 -

We get equation of motion
mi’g — kl?l + 2k£132 =0

k 2k
i‘g = —X1 — —I2 (22)
m m

(2.1) and (2.2) are the same as Eqgs. (1.8.24) and (1.8.25).

Exercise 2.1.3. A particle of mass m moves in three dimensions under a po-
tential V (r,0,¢) = V(r). Write its £ and find the equations of motions.

Solution. The kinetic energy and potential energy are
1 . .
T= §m(7‘2 +726% + 1?2 sin? 09?)
V=V(r)
Then the Lagrangian is

1 ; j
L =T~V = m(i®+r°0° +1”sin 06%) — V(r)
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e Euler-Lagrange equation of 7:

8%'? = mr, % = mré? +mrsin29q52 — 3‘/7(1")
or or r
a(ozy oz
dt \ or or
The equation of motion is
mit — mr? — mrsin® 60 ¢ + M =0

or

o FEuler-Lagrange equation of 6:

% = mr20, o6 = mr?sin 0 cos 0 ¢°
o0 or

d(oz\ oz

dt \ 96 00

The equation of motion is
mr26 + 2mri6 — mr? sin 6 cos 0 d.>2 =0

e Euler-Lagrange equation of ¢:

a(;j = mr? sin? 0(;.5, % =0
d(azy oz
dt \ or or
The equation of motion is
" (mr?sin® 60 ¢) = 0
mr?sin? 6 ¢ = |
. l
¢= mr2sin® 0

where [ is a contant.

2.2 The Electromagnetic Lagrangian
2.3 The Two Body Problem

Exercise 2.3.1. Derive Eq. (2.3.6) from (2.3.5) by changing variables.

Solution. Since

moIr . . mgf‘
rp=rcM+ ———— r=rcmMm+ ———
mi + ma mi +ma
mir . . mir
ro=rcm — ———— o =TrcMm —

my + ma my + mso
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The Lagrangian becomes

IR 1.
£ = 5m i1 + 52 |to]” — V(ry —13)

1 maol’ S myr 2
= ;M (fCM + 2) + -my (I'"CM - 1) —V(r)

2 mi1 + mo 2 my1 + msy
_ %m1|fCM\2 + ;mM? + %m2|fCM\2 + ;Mm? V()
=l malien? + 3 MR ERE iy
_ %(m1 +ma)[Fem]? + %%m? V()

2.4 How Smart Is a Particle?

2.5 The Hamiltonian Formalism

Exercise 2.5.1. Show that if ' = >~ > T;,(q)¢;4;, where ¢’s are generalized
vog

velocities, > p;¢; = 27T
i

Solution.
or
Ps = 94s
= Z Z Ti(a)4idjs + Z Z T3(q)isq;
i P
=Y Ti(@)di + Y Toi(@)d;
i J
Therefore,

> bt =Y Tis(@)dids + Y Toj(@)dsds
s A 7
=T+T
=2T

Exercise 2.5.2. Using the conservation of energy, show that the trajectories in
phase space for the oscillator are ellipses of the form (z/a)? + (p/b)? = 1, where
a’? = 2E/k and b = 2mE.

Solution. The Lagrangian is

1
g = §m$2 — 5k$2
So the momentum is
0.7 .
= — =mI
P= 8¢
Hamiltonian is
p* 1
H =pi— L =—+ —ka?

T 2m 2
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Since £ is not an explicit function of ¢, 5 is conservative. Set ¢ = E, where

FE is a constant, we have
2

1 P
“kx*+—=FE
2t om

If we denote a? = 2E/k and b* = 2mE, we have

7 2 P\ 2
el ZY
)+ ()
Exercise 2.5.3. Solve Exercise 2.1.2 using the Hamiltonian formalism.

Solution. Start from Lagrangian of the system

1
L = —m(i? +23) — k(z? + 23 — 2120)

2
Then the momenta are

0L

pP1= 5 =mI = IT1= n
011 m
0% . .

P2 = =— = MIa = To = pj
0o m

Then the Hamiltonian of the system is
H =p131 + paio — L
PP Pt P

i Fm T am g TR S )
2 2
p p
= ﬁ—&—ﬁ + k(22 4+ 22 — z129)
e Hamilton’s canonical equations of 1:
. OH _ m
rH = —-— = —
! opr m
. 0
pP1 = 7@ = 72]€l’1 + ICI’Q
1

From the first equation, we know p; = ma;. Take the time derivative on
the both side, we get p; = m&;. Substitute it into the second equation,

we get
mi, = —2kx1 + kxo
. 2k k
1 =——x1+ —T2
m m

o Hamilton’s canonical equations of 2:

i _8%_]2

2 (9})2 _m

pgz—%:—2k$2+k1’1
6.132

From the first equation, we know po = mis. Take the time derivative on
the both side, we get po = mis. Substitute it into the second equation,

we get
mis = —2kxo + kx1
. k 2k
XTg = —T1 — —T2
m m
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Exercise 2.5.4. Show that J# corresponding to % in Eq. (2.3.6) is 52 =
Ipem|” /2M + |p|2/ 2u + V(r), where M is the total mass, u is the reduced
mass, pcm and p are the momenta conjugate to royn and r, respectively.

Solution. Start from Lagrangian

1 . 1 mimy .
L== 24 PV
2(m1 + mo)|fom|” + D — |7 (r)

1. 1.
= SMlioul® + Suléf? - V(r)

where total mass M = mj + mo and reduced mass pu = n’ﬁf;; Then the
momenta satisfy
0L . . lPoM]|
pPeM| = mo—— = M|rem = |toMm| = ——
Ipenl = g = Mléow ffou| = PO
0L ) . Ip|
Ip| = o= = ul¥| = [f]=—
| 1

Therefore the Hamiltonian is
H =pcm - -Tem +p-T—Z

. . 1. . 1 .
= |pCMHrCM| + |p||I‘| — §M|rCM‘2 — 5#"1“2 + V(I‘)

lpeml® | IpI® 1, Ipcul® 1 |p?
=T T M e ke TV
|PCM\2 \P\Q
=2M Py
o Ty TV

2.6 The Electromagnetic Force in the Hamilto-
nian Scheme

2.7 Cyclic Coordinates, Poisson Brackets, and
Canonical Transformations

Exercise 2.7.1. Show that

{w’)‘} - _{/\’w}
{w, A+ 0} ={w, A} + {w, o}
{w, Ao} = {w,A\}o + Mw, o}

Note the similarity between the above and Egs. (1.5.10) and (1.5.11) for com-
mutators.

Solution.

Ow 0N Ow OA O\ Ow O\ Jw
=3 (G~ en) =~ 2 (G~ o) =~

% i
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B ow OA+0) Odw I(A+o0)
{w,A+oh = Z (3q~ Ip; Op; dq;

_Z 8)\+8U _(%J_ (9)\+80
ﬁqz Opi  Op; Opi \0Oq;  Oqg;
_Z awﬁx\_awa)\ . 8w80_8w80
B p 0q; Op; Op; Oqg; 0q; Op; Op; Oqg;
_Z 8@)8/\_8w8)\ +Z 8w60_8w80
B p 0q; Op; Op; Oqg; 7 0q; Op; Op; Oqg;
— {w A} + fw, 0}

B dwd(Aag)  Ow O(\o)
tw Ao} = ; [5’%‘ Opi  Opi  Oq

_Z &uaa awa,\a_ awaa_ﬁlaAU
0q; Op; 3q7: Op; Opi 0q;  Op; 0g;

Ow 0o Ow Oo Ow 0N Ow O
-\ _ _
Z,i: (a%’ Ipi  Op; 3%’) - XL: (3%‘ Opi  Opi 5%) 7
= Mw,0} + {w, A\}o.
Exercise 2.7.2. (i) Verify Eqs. (2.7.4) and (2.7.5). (ii) Consider a problem in

two dimensions given by ' = p2 + p2 +ax® 4 by?. Argue that if a = b, {I., #}
must vanish. Verify by explicit computation.

Solution.

(i)

dq; 0q; 0q; 0q, 0q; 0q;
= X (2 B ) ()
k

—~ \Oqr Opr  Opr Oqp

Op; Op;  Op; Op; op;  Op;
{pi,pj}:Z(aqk-J— )= (0 -2 0) =0
k k

Opr  Opr  Ogqy

dq; Op;  dq; Op;
{(Jupj}i:Z( e : J) ZZ(5ik5jk—0~0)=5ij
k

—~ \Oqr Opr  Opr O

and

(5 80K 0
k k

Oqrx  Opr.  Opr  Oq Opk Oqr,
o .
N Opi —
Op; 0  Op; 0 o o
e, 2} ::;(8% Opr Ope 8qk) :;@.3@@_%'3%)
o .
= - d4; =D

(ii) The Hamiltonian given is # = p? erz +ax? +by? If a = b, H# has a
symmetry under simultaneous rotations in the x — y and p, — p, planes,
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under which [, (the generator) is conserved. Therefore, {l,, 7} = 0. We
check this as follows:

ol, o 0l, 0
= zk: <an Ope Ok 861k>

_612.8%+%.8%_8l2.%_8lz.%
~ Ox Op., Oy Op, Op. Oz Opy, Oy

But

X 4 ol,  9O(xpy — ype) ( ol, 0l, )

— =2 9 = K = ) =\7Y, )

o TV opy Ipr op, Opy) = V)

oA oA 0H ol, _ ol, 0l, _

(95% - ( aﬁC ) ay > - (2ax7 2by)7 6gk - <a1:7 8y> - (pyu pz)
So

{lzajf} =Py 2px + (_pw) . 2py - (_y) <2ax —x - Qby = 2xy(a - b)
which vanishes if a = b.

Exercise 2.7.3. Fill in the missing steps leading to Eq. (2.7.18) starting from
Eq. (2.7.14).

Solution. Consider the following transformations:

If this transformation is canonical, then the variables ¢; and p; satisfy Hamilton’s

equation:

.o

= op;

.o

b= 0q;
If we write Hamiltonian 7 as a function of new variables, we can get partial
derivatives

0A(q,p) _ 3 (Maflk Mam)
Op; Oqr, Op; ~ Opy Op;

k
0A(q.p) _ T (affaqk M@pk>
9q; g 9q;  Opy Oq;

k
The time derivative of any function w can be written as a Poisson bracket with

Hamiltonian J#:
w=A{w, H}



CHAPTER 2. REVIEW OF CLASSICAL MECHANICS

Therefore, for transformed velocities, we have

g = 1q;, '}
B Z 9g; 0  0q; 0K
B ; 0q; Op; Op; 0g;
ZZ [3% (Wa% +W3pk> _0g; (Wa% +M8pk):|
9q; \ 0qx Op; ~ Opr Op; Opi \ Oqr. 9q;  Opr. 9qi
9q; 9q, 04, 3%) <3Qj pr  0g; 3pk)
Z 3% 27: (3(12' Op; Op; 0g; Z Opy, 27:

9q; Opi  Opi Oq;
o
= — 19,9k + —14;,D
Ek 90 {qj r} Ek A {aj, px}

In order to satisfy Hamilton’s equation, we must have
{@, @} =0
{a,px} = 0jk

We could do the same calculation for the time derivative of transform momentum
P = {p;. '}

R

0p; 0 9, a%)

dq; Op;  Op; Og
B ZZ {apj (a%” Oy N o0 6pk> _ Opj (aff O N o 3pk>:|
, 0q; \ Oqr Op;  Opx Op; Opi \ Oqr. Oq;  Opr, Oq;
op; 0qr _ Op; 3%) (apj bk Op; 52%)
Z Ok ; (3%‘ Op; Op; 0¢; Z 0Pk zl:

0q; Op; Op; 0g;
o0 o
= —— D5 ks + ——Pj,D
Ek 90 {pj> ar} Ek A {pj. i}

In order to satisfy Hamilton’s equation, we must have

{Pj @} = =k
{Pj,px} =0
Thus, we can conclude that in order for the transformation to be canonical, the
conditions are o o
{Qjan} = {Pjapk} =0
{G,Pr} = 0j
Exercise 2.7.4. Verify that the change to a rotated frame

T =xcosh —ysinb

y =xsinf + ycosb
Dy = Pz cos — p, sin 6
Dy = D Sin b + p, cos 6
is a canonical transformation
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Solution. To show this is a canonical transformation, we must evaluate the
Poisson brackets. Before computing Poisson brackets, we can first compute
non-vanishing derivatives

0% 0z

%:cose 3—y:—sm9
oy o5
o sin 6 a—y = cosf
Opa = cosf OPa = —sind
Opa Opy
Py =sind Py = cos¥d
ap:c apy

where g1 = x, g2 = y and p; = py, P2 = py-
- 0z oy 0% Oy
= — = O
{x, y} Zl: <a%‘ Op; Op; 3%’)

since neither coordinate depends on any momentum. Similarly,

{ﬁmﬁy} =0

since Poisson bracket contains derivatives of p; with respect to ¢; and these are
all zero.
The remaining Poisson brackets are of the form {g;,p;}.

_ 0z 0p, 0% Op,
1@} = XZ: (8%— opi  Opi 8qz~>
_onop. 02 0p,

Ox Op, Oy Opy
= cos? 0 +sin® 0
=1
_ 0z 0p oz Op
122y} = ZZ: (5% o0 o, 361?:)
_ 0z dp, 0z dp,
Oz Op, Oy Opy

= sin 6 cos @ — sin 6 cos 0
=0
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Similarly,

- 0y 0p, Oy Opy
{y;pZ} - EZ: (8% 8pi api aq¢>

_ 0y Ops
0z Opy

05 05,
dy dpy

= sin f cos § + cos O(— sin )

=0

- dy dp, Oy Ip,
{U.py} = XZ: (8%— Opi  Op; Oq;

0 Opy

9y 9py
dy 9py

=sin@sinf + cos 6 cos O

=1

Therefore, the change of rotated frame is a canonical transformation.

Exercise 2.7.5. Show that the polar variables

p=(2*+ 9% 1z , ¢ =tan"'(y/x)

R TPz + Yp
pp:ep'p: x Y

(a2 +92)*

Py = TPy — Yz (= 1)

are canonical. (€, is the unit vector in the radial direction.)

Solution. The non-vanishing derivatives are

@_ x
al'_,/x2+y2
%9 _ -y
ox 22+ y?

Wy _ Yo — YDy
Oz (22 + y2)3/2

Op _ T
Ope /a2 + 92
Opy

ox Py

Opy

op. "V

Now, let’s evaluate Poisson brackets

o _ Yy
Oy \Jx2 442
99 _ _x
oy  x2+y?
Opp _ 2%y — xyps
dy  (a%+y?)3/?
Op _ Yy
Opy 22+ 92
Op
=

)
B
s _
Opy

- p ¢ 9p 99\
{p.0y =) (8(]1- dp;  Opi 3%‘) -

%

41
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since coordinates don’t depend on the momenta.

dp, Op dp, Op
{pp,p¢}zz< p YP¢ p VP

0q;

_ 90,9y Opy Opy | Opp Ips _ Op, Ips
dr Op, Op, Ox dy Opy Opy Oy
_ Y’ — zypy (—y)— —" 4 vy —ayps Yy
(2 + y?)3/2 Vaz 2 @R a2 2

_ =Ype tay’py — (2% + ay?)py + 2%py — 2Pype + 2%y +5°)pa

Op; Op; 0g; )

=0

(22 + y2)3/2

The remaining Poisson brackets are of the form {g;,p;}.

{pvpp} =

{p,ps} =

{¢7pp} =

{6,ps} =

3 dp Op,  Op Op,
0q; Op; Op; 0¢;

i

9p Opp _ Op Opp , OpIpp  Op Ipp
0x Op, Op, Oxr  Oydp, Opy Oy
2 2
I —

.132 + y2 3)2 + y2

1
Z 9p Opg  9p Opy

P 9q; Op; Op; 9q;

9p 9y 9p 9py  OpIpy  Op Ips
O0xr Op, Op, Ox  OyOp, Opy Oy
W g
0
Z 0o app . %app

P 9q; Op; Opi 9q;

0009, _ 06 0p, _090n, _ 96 0p,
O0x Opy Opy Ox  OyOpy, Opy Oy

-y x x Y
-0+ -0
a2 +y? \fa2 4 g2 a2 +y? [ 42

0

Z 99 9py _ 0¢ Ipy
0q; Op; Op; Og;

i

99 0py _ ¢ Opy | 99 0py _ 0¢ Ops
O0x Op,  Op, Ox dy Op, Opy Oy

-y T B
x2+y2( Y) O+m2+y2x

1

42

(7pm)

Thus all the Poisson brackets are correct, so the transformation is canonical.
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Exercise 2.7.6. Verify that the change from the variables ri,rs, p1,p2 to
rcm, Pou, T, and p is a canonical transformation. (See Exercise 2.5.4).

Solution. The transformation from the coordinates r; and rs of the masses m;
and ms to relative position r and the position of the center of mass rops are

r=rTr1 —1rI9
miry + Mals

rem =
M

where M := mj + mo is the total mass. The conjugate momenta is the original
system are
Pi = miT;

The conjugate momenta transform according to

map1 — M1P2
M
pPcyv = Mtcon = p1 + P2

where p 1= 7472 is the reduced mass.

Now we calculate the Poisson brackets to check whether it is a canonical
transformation.

Note that the new coordinates depend only on the old coordinates, and
conversely, the new momenta depend only on the old momenta. Also notice
that r; depends only on the ¢ components of r; and ry, and p; depends only on
the j components of p; and ps.

Since the Poisson brackets {g;, g;} and {p;,p;} all invoke taking derivatives
of coordinates with respect to momenta or momenta with respect to coordinates,

we have

{6:,q;} =0

{pi,pj} =0
where ¢ and j takes on the values z, y and z. Then what we left to check are
{Gi,p;}. There are three cases {r;,p;}, {rcami, pom;}, {remi,pj} or {ri,ponrj}.

(1) {ri,pj}

° 7,:]

Or; Op; Or; Op;
troopet = za: <8qa Ope Opa 3qa>
Or; Op;
B ZQ: 9qa Opa
Or; Op; Or; Op;
" Or1; Opu | Ory; Opa;

:1.@+(_1).(_@>

M M
_m1+m2
B M
=1

where ¢, and p, sum over all 6 components of the original posi-
tion vectors {rig, 71y, 712,722, T2y, T2-} that we denote as {ri;,re;}
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and momentum vectors {plm;plyaplzap2r7p2y7p22} that we denote
as {p1i, p2i }, respectively.

- i)

ar; Op; or; Op;
{xi7yj} - za: <GQQ a?ii - Opa aq;)
or; Op;
N Z 9qa Opa
_ 87"1- Opj n or; Op; or; Op; n or; Op;
Or1i Op1;  Org; Opa;  Orij Op1;  Oraj Opoj

mao mi
=1-0 —1)-0 0. —= 0.(_7)
+(=1)-0+ +

=0

(2) {remipom;}

. Z :J
B Oromi Opemi Oromi Opowi
{remi,pomi} = za: ( 9a  Opa e O
_ Z orcmi Ope i
8Qa 8poz
_ Orewmi Opomi | Oromi Openi
ori  Opu Ora;  Opaj
mi mo
2
M + M
_my + mo
M
=1
e 1F£]
B Orcmi Opemy  Oremi Opem;
{remi pom;} = Z ( 900 Opa e Oqn

_ Z arCMz 6pC'Mj
0a Opa

_ 3T0Mz Opcmj . Orems Opemy . Oremi Opemj — Orcmi Opow;

ory;  Opis Ory;  Opa; ory;  Opyy Org;  Opy;
=0

(3) {reaispj} or {ri,ponj}
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. i=j
B Orcmi Opi Orcmi Opi
{TCMzapJ}_za:< aqa apa apa aqa
-y Orcmi Opi
p 0¢a  ODa
_ Orcwmi Opi | Orcmi Opi
~ Ory Opy Ora;  Opai
_ i mp Mg (,@)
M M M M
=0
_ Or; Opcai Ory Opci
{rzapCM]} - Za: <aqa apa apa 86](1
B Ori Opc i
N - 990 Opa
_Ory Openi | Ori Opowri
~ Ory; Opu Oro; Opa;
=1-1+(-1)-1
=0
ciF]

Orcmi Op;  Oromi Op;
{TCMi;pj}:Z( X 5771_ Opa aq;)

[e3

-y Orcmi Opj
p aQa 3pa
_ Orcai Op;  Orowni Op;  Oroni Opy  Orcai Opj
Orii Opii Orai Opa; ory; Opij Oraj Opaj
—0

Or; Opcmy Oy Opow;
{rispemst = Z (6qa O0pa Opa 04

Or; Opcj
— 0¢a Opa

_Or; Opomj | Ori Opomy | Ori Opcmy | Ori Opowy

B Ori; Opi Orgy;  Opa; 3T1j 3p1j 37’2j 3102]'
=0

Thus all the Poisson brackets are correct, so the transformation is canonical.

Exercise 2.7.7. Verify that

is a canonical transformation.
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Solution. The partial derivatives are

87(1 =—q*! @ =cotp
dq dp
op op
a—z = cotp a—z = —q(1 + cot?p)
The only remaining term to verify is
9q0p 9q0p

{g.p} = 340p  9pdq
=—q '(—q(1 + cot? p)] — cot?p
-1

Thus the transformation is canonical.

Exercise 2.7.8. We would like to derive here Eq. (2.7.9), which gives the trans-
formation of the momenta under a coordinate transformation in configuration

space:
q; — Qi(qla cee 7qn)

(1) Argue that if we invert the above equation to get ¢ = ¢(g), we can derive
the following counterpart of Eq. (2.7.7):

9q; -
Zagfh

(2) Show from the above that

(3%’) _ Og;
a3, ), aa;

o [02G@D)] _[22@.)
' oq; |, 9q;
Use the chain rule and the fact that ¢ = ¢(g) and not ¢(g, §) to derive Eq.
(2.7.9).

(4) Verify, by calculating the Poisson braket in Eq. (2.7.18), that the point
transformation is canonical.

(3) Now calculate

q

Solution.

(1) Since ¢; = ¢i(q1y- -+ Gn),

sz 9¢: dg; _ 5qz i

(2) Since the velocities g; are independent variables, if we hold the coordinates
¢ constant, we will have

8%) dq; - 9gi gy, 8% _ 904
! - d 2.3
(8qj a <Z a1 ) zk: Odr 0q; Z 5% aq; (2:3)
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(3) We can use the Lagrangian to see how the momenta p; transform under

the coordinate change. The definition of the canonical momentum is

Y
-0

bi:

If we write the Lagrangian in terms of the new coordinates and velocities
¥ = 2£(q,q), then the momenta in the new coordinate system are

0L (q,q)

ST
At this point, it’s worth noting that although .#(q,q) and .£(q,q) are
different functions, they have the same value at each point in the config-
uration space. That is, if we choose some point that has the coordinates
(q,q) in the g system and coordinates (¢, ¢) in the ¢ system, then, numeri-
cally at that one point, we must have .2 (7, ) = -£(q, ¢). Because of this,

we can write . )
b= (0229 _ (9Z£(2.d)
' 9 ), i ),

q q

That is, if we are keeping ¢ constant, the derivative of £ with respect
to ¢; must be the same (numerically) no matter what coordinates we are
using to write .Z. Therefore, we can use the latter form and then use the
chain rule to write out the derivative:

_ 9L(q, Q)) {3L dq; | OL aq'a}
P = — = 5. o= + o A=~
b ( 00, /4 2 0q; 0g; ~ 0q; 0g;

J

Because the coordinates ¢ don’t depend on the velocities ¢, the first term
on the RHS is zero. We can use (2.3) in the second term, and we have

- oL 94
J

d4; 0g;

Y 9L 9g;

— 04; 9g;
GQj

= Z 5z Pi
. 0G;

where we used the definition of canonical momentum at the last equality.
We have derived Eq. (2.7.9).

Point transformation is given by
G = (ji(qu s aQn)
_ 9q,
pi=)_ 520
5 Y

In this case, the coordinate transformation to g is completely arbitrary,
but the momentum transformation must follow the formula given. The



CHAPTER 2. REVIEW OF CLASSICAL MECHANICS 48

derivatives gf in the formula for p; are taken at constant . Since the co-

ordinate formulas depend only on the old coordinates, and the momentum
formulas depend only on the old momenta, the Poisson brackets satisfy

{qiaqj} = {ﬁzaﬁj} =0

For the mixed brackets, we have

L~ (0a0n 06 0n
(0.7} = Xk: (3% Opr  Opi, Oqy

B 0g; dq
B — O, <3pk <Z 3% ))
9qi dq1 Op
-2 a (21: g, 0pk>
_y~ a4 Ou 5
-y (Z 2 lk>
= 04i Oqr
— Oqi, 9g;
_0g;

0q;

Thus the point transformation is a canonical transformation.

Exercise 2.7.9. Verify Eq. (2.7.19) by direct computation. Use the chain
rule to go from ¢, p derivatives to ¢, p derivatives. Collect terms that represent
Poisson braket of the latter.

Solution. The Poisson bracket of two functions is defined as
Ow 0o  Ow Oo
waot=> (5 5-"~75 7
p a% 8])2 apz a(h

Calculating the Poisson bracket requires knowing w and o as functions of the
coordinates ¢; and momenta p; in the particular coordinate system we’re using.
The simplest way of finding out is to write the canonical transformation as

4 = Gi(q,p)
pi = p(q,p)

We can then write the Poisson bracket in the new coordinates as

(w0 ap = Z (&u 0o Ow 80)

0q; Op; 8pj aq;

Assuming the transformation is invertible, we can use the chain rule to calculate
the derivatives with respect to the barred coordinates. This gives the following
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(Here we use Einstein summation convention):

(ohap = (2200 B ) (0 000 o
’ 0q; 0q; ~ Op; 05 ) \Oqr Op; ~ Opr Op;
Ow 0q;  Ow Op; do Oq, 0o Opy
- (3%‘ op; ~ Op 3@) <5qk% 31%3@)
_Ow do (0q; Opr. ~ Oq; Opy, Ow 0o (Op; Oqr.  Op; Oqx
" 0q; Opi (3%5’%‘_ 9p; 3%‘) Op; Oqr (3%‘315]'_ 9p; 5%‘)
Ow 0o (0q; Oqi,  Oq; Oqy. Ow Oo (0Op; Opr  Op; Opg
9q; Oqr (3%‘5@_3@%) dpi Opr, (5%%_3@5%)
0w do Ow Ow

Ow Oo Oo Oo
- 7y + (2] + (2] + (2]
0q; Opy {aip} Op; Oqy. {pis i} 0q; Oqy, {ai an} Op; Opx, {pis i}

For a canonical transformation, the Poisson brackets in the last equation satisfy

{9} = —{pis a1} = dix
{¢i, qx} = {pispx} =0

Applying these conditions to the above, we find

[ Ow 0o Ow Oo
din = (G e~ o)
_ 0w do  Odw do
B dq; Opi - Op; 9q;

= {w, U}q,p

Thus the Poisson bracket is invariant under a canonical transformation.

2.8 Symmetries and Their Consequences

Exercise 2.8.1. Show that p = p; 4+ p2, the total momentum, is the generator
of infinitesimal translations for a two-particle system.

Solution. Since g = p; + p2, it generates the infinitesimal transformations

0 9
ory = +6?’; =+e, 0p1=—e5- =
dxy = tezt =+, Opz = *6867!; =0

So to order ¢, these give the canonical transformations z; — Z;(z;,p;) and
i — pi(xj7pj) with

T1=x1+¢€, P1=Dp1,

Tg = w2 +€, P2 =p2,

which is precisely a spatial transformation of the whole system by an amount ¢.
Exercise 2.8.2. Verify that the infinitesimal transformation generated by any

dynamical variable g is a canonical transformation. (Hint: Work, as usual, to
first order in €.)
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Solution. If the coordinates and momenta after the infinitesimal transforma-
tion generated by dynamical variable g becomes

i — a4 209
i = qi api
By =p; -2
J J aqj

Then the Poisson brackets between new coordinate and momentum is

o d0q; Op;  0q; Op;
o) (205 00m)
k

Oqi Opr,  Opi, Oqr

> g &g &g dg
B Z Kalk - 53171‘3%) <6jk * ang'@pk) B Eapzﬁpk . anz@q;j

k
0%g 0%g
= Oikdjk +e5——F— 01 — 05 -5+052}
Xk:{ L O A g 0q;Op, (&)
2 2
g 079 2
dij +e - +O(e
7 T 0pidq;  9q;0p; ()
= 8;; + O(?)

Therefore, the infinitesimal transformation generated by any dynamical variable
g is a canonical transformation.

Exercise 2.8.3. Consider

Pitpy 15,
=T et @)
whose invariance under the rotation of the coordinates and momenta leads to
the conservation of [,. But 4 is also invariant under the rotation of just
the coordinates. Verify that this is a noncanonical transformation. Convince
yourself that in this case it is not possible to write §¢ as e{, g} for any g,
i.e., that no conservation law follows.

Solution. Rotation of just the coordinates:

T =xcost —ysinb Pz = Dz
y=xsinf + ycosd Dy = Py
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Then the Poisson brackets are

(g 0105 020y 0s oy 0p0y
Y= B Opr Opy 0z  Oyop, Op,0y

{val_)y} = {vapy} =0
. ozop, 0z 0p, O010p, 0% Op.
Ly = 980Pe | OF Opa | OTOPx  OF OPa _ g 41
{#.p:} Ox Op, Op, Ox * dy dp,  Op, Oy cos§ 7

o _ORon, onop, 0rop, 0 b, _
{#.py} = O0x Op, Opg Ox * oy dp, Op, Oy sind # 0
o OwOn 0y on. ouop. 09 0n. _

{g.p:} = O0x Op, Opg Ox * oy dp, Op, Oy sinfd #0

_ 9y Opy 9y 9p, , Oyodpy, Oy Ip
e e R

0z Opy B Opy Ox  Oydpy Opy Oy

=cosf #£ 1

Thus, rotation of just the coordinates is not a canonical transformation.

_ _ (o 89 _ 9w dg | 9 g _ O g
o =e{H, g} =¢ ( v Ops ~ Ops 03 T By Opy — op, 0y )» We have

or = e—g Ope = —6@,

%pm ox

oy = e 0py = —E@.

8py dy

which means that

_ dg _ dg
x_x+€8p1 p'ﬁ:px_aai
dg N dg
y=y+e— Py =Py —E5-
y=y 3py Yy Y Ay

o1

According to last exercise, this is a canonical transformation. Therefore, there

doesn’t exists any g, such that 6.7 = e{, g}.

Exercise 2.8.4. Consider 7 = %pQ + %xQ, which is invariant under infinites-
imal rotations in phase space (the x — p plane). Find the generator of this
transformation (after verifying that it is canonical). (You could have guessed

the answer based on Exercise 2.5.2.).

Solution. Consider a one-dimensitonal system with

1
% = §(p2 +x2)

and perform a infinitesimal rotation in phase space x — p plane:
ox =ep
op = —ex

This is a canonical transformation since

{z,p} = {=,p} + {0z, p} + {z, 6p} + O(?)
= {z,p}

=1
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If g(z,p) is the generator

0 0

(Sx:s{x,g}zsa—i zspéa—f):
99 9g
5 = = —E— = — _— =
p=e{p, g} €5y = o =0
The solution of these two equations is
1
glz,p) = §(p2 +23) +C

where C is a constant of integration. The equality is just the Hamiltonian itself.
In fact, the canonical transformation is just the time evolution with 6 = t.

Exercise 2.8.5. Why is it that a noncanonical transformation that leaves %
invariant does not map a solution into another? Or, in view of the discussions
on consequence II, why is it that an experiment and its transformed version do
not give the same result when the transformation that leaves 7 invariant is not
canonical? It is best to consider an example. Consider the potential given in Ex-
ercise 2.8.3. Suppose I release a particle at (z = a,y = 0) with (p, = b,p, = 0)
and you release one in the transformed state in which (z = 0,y = a) and
(pz = b,py =0), i.e., you rotate the coordinates but not the momenta. This
is a noncanonical transformation that leaves 7 invariant. Convince yourself
that at later times the states of the two particles are not related by the same
transformation. Try to understand what goes wrong in the general case.

Solution. If the Hamiltonian is invariant under a regular canonical transfor-
mation and we can find a generator g such that an infinitesimal version of this
transformation is given by

B 0
QiZQi+58lEQi+5Qi
Di

_ dg
pi=pi—ey = p; + 0p;
qi

then g is conserved.

If we are dealing with a finite regular canonical transformation where we go
from (¢,p) — (g, ), and the Hamiltonian is invariant under this transformation,
then it turns out that if a trajectory (q(t),p(t)) satisfies Hamilton’s equations
of motion:

OH
3Pi_qi
8H_.
_8% — b

then the trajectory obtained by transforming every point in the original trajec-
tory (q(t),p(t)) to the barred system (g(t),p(t)) is also a solution of Hamilton’s
equations in the sense that

OH .
= (2.4)
OH .

=Dpi (2.5)

- 0G
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The proof of this is a bit subtle, but goes as follows. To begin, review the
derivation of the conditions for a transformation to be canonical. This deriva-
tion applied to a passive transformation, in which the two sets of parameters
(¢,p) = (g, p) refer to the same point in phase space. The transformation we’re
considering here is an active transformation, in which (¢,p) — (g,p) actually
moves the point in phase space. The original derivation (for passive transforma-
tions) relied on the fact that the numerical value of the Hamiltonian is the same
in both coordinate systems, since both (¢,p) and (g, p) refer to the same point
in phase space. However, for our active transformation, we’re assuming that the
Hamiltonian is invariant under the transformation, that is H(q,p) = H(q,p),
where (g, p) and (g, p) now refer to different points in phase space. Since the as-
sumption that the Hamiltonian satisfies H (g, p) = H (g, p) was all that we used
in the original derivation, the same derivation works both for passive transfor-
mations (always) and for active transformations (if the Hamiltonian is invariant
under the active transformation). We therefore end up with the equations

. 0H OH

5= 2 5 x4 7= 1@ p 2.
qj Zk: Oar {qj,qzc}+zk: Ok {a;,pr} (2.6)
s oH  _ _ oH

pj = zk:*a@c (D)@} +zk:78m {Bj P} 2.7)

Since the transformation is specified to be canonical, the conditions on the
Poisson brackets apply here:

{@j, @} = {pj,pr} =0 (2.8)
{@,Pr} = 0j (2.9)
The result is that the transformed trajectory also satisfies Hamilton’s equations
(2.4) and (2.5).
We can now revisit the 2-d harmonic oscillator to show that a noncanonical
transformation violates these results. The Hamiltonian is

1 1
H= 5 (pi +p§) + §mw2 (ac2 + y2)

and we consider the transformation where we rotate the coordinates but not the
momenta. The transformation is
T =wxcos —ysinb
y=xsinf + ycosb
151 = Pz
Py = Dy
As we’ve seen, this is a noncanonical transformation. To see what happens,
we’ll consider the initial conditions
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The mass is started off at a point on the x axis with a momentum only in the x
direction. In this case, the mass behaves like a one-dimensional harmonic oscil-
lator, moving along the x axis only. To be precise, we can work out Hamilton’s
equations of motion:

P = =5 = —Mmw's (2.10)
_O0H  p,
=0 = (2.11)

The equations for y and p, are the same, with x replaced by y everywhere.
We can solve these ODEs in the usual way, by differentiating the first one and
substituting the second one into the first to get

Pz = 7mw2i7 = 7w2pz

This has the general solution

Pz (t) = Acoswt + Bsinwt
We can do the same for x and get

x(t) = C coswt + Dsinwt

Applying the initial conditions, we get

Plugging these into the equations of motion (2.10) and (2.11) and solving for B
and D we get the final solution

Pz (t) = bcoswt — mwa sin wt
b .
x(t) = acoswt + — sinwt
mw
y(t) = py(t) =0

Now suppose we start off with 2(0) = 0, y(0) = a, p.(0) = b and p,(0) = 0.
That is, we have rotated the coordinates through 7, but not the momenta. We
now begin with the mass on the y axis, but moving in the x direction, so as
time progresses, it will have components of momentum in both the x and y
directions. Although it’s fairly obvious that this motion will not be simply the
motion in the first case rotated through 7, let’s go through the equations. By

the same technique as above, we can solve the equations to get

Pz (t) = beoswt
py(t) = —mwasinwt
t) = — sinwt
x(t) ——sinw

y(t) = acoswt

If we look at the system at, say, t = 5, then coswt = 0 and sinwt = 1. The
mass that started off on the x axis will be at position (z,y) = ( b O) and so

mw’
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will the mass that started off on the y axis. Since the two masses are in the
same place, obviously one is not the rotated version of the other.

Another, probably easier, way to see this is that since the first mass moves
only along the x axis, if the rotated version of the trajectory was also to be
a solution, the rotated trajectory would have to lie entirely along the y axis,
which is certainly not true for the mass that starts off on the y axis, but with
a momentum p, # 0.

In the general case, if the transformation is noncanonical, then the Poisson
brackets in (2.6) and (2.7) don’t satisfy the conditions (2.8) and (2.9), with
the result that Hamilton’s equations aren’t satisfied in the (g,p) coordinates.
(There may be a deeper, physical interpretation that I've missed, but from a
mathematical point of view, that’s what goes wrong.)

Exercise 2.8.6. Show that 0S5./0x; = p(tf).

Solution. The situation is as shown in the following diagram:
x

Tp+ AT |[---mmmmm oo

.’Ef 7777777777777777 -

The two trajectories now take the same time, but in the modified trajectory,
the particle moves a distance Az further. Since both paths take the same time,
there is no extra contribution ZAt. In this case n(t) > 0, since the new (blue)
curve z(t) is above the old (red) one x(t). The total variation in the action is
now

0L
5SC1 = 877’](71') .
At t =ty, n(ty) = Az, we get
0Sa = % Ax
ox ¢
% _ 921 _pay)
ory 0|, "

Exercise 2.8.7. Consider the harmonic oscillator, for which the general solu-
tion is
z(t) = Acoswt + B sinwt.

Express the energy in terms of A and B and note that it does not depend on
time. Now choose A and B such that z(0) = z; and z(T") = z2. Write down
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the energy in terms of x1, x5, and T. Show that the action for the trajectory
connecting x; and xs is

mw

Se1 (71,22, T) = YsnwT [(

2 + :Eg) coswT — Qxlxg]

Verify that 05./0T = —E.
Solution. For the case of the one-dimensional harmonic oscillator, we have

ascl
8tf

= —H(ty)

The general solution for the position is given by

z(t) = Acoswt + Bsinwt
#(t) = —Awsin wt + Bw cos wt

The total energy is given by

1
E = “mi? + ~mw?a?
2 2

— % ((—Awsinwt + Bw coswt)® + w?(Acoswt + Bsinwt)?) (2.12)

2
(424 B?)

where we just multiplied out the second line, cancelled terms and used cos?  +
sin?z = 1.
To get the action, we need the Lagrangian:

L=T-V

1 1
—ma? — imwaQ

2
= % ((—Awsinwt + Bw coswt)? — w? (A coswt + Bsinwt)?)
mUJQ 2 .92 2 2 2 2 3
=" [A (sm wt — cos wt) + B (cos wt — sin wt) — 4ABsinwt coswt]
2
= % ((B2 — A2) cos 2wt — 2AB sin 2wt)

T
S = Ldt
0
= % B? — A?) sin 2wt + 2AB cos Zwt]z;
mw

- A%)

B? — A?) sin 2wT + 2AB(cos 2wT — 1)] (2.13)
- A2) sinwT coswT + AB (c052 WwT —sin? wT — 1)]

- A7)

A?) sinwT coswT — 2AB sin? wT]
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To proceed further, we need to specify A and B, since these depend on the
boundary conditions (that is, on where we require the mass to be at ¢ = 0 and
t=T). If we require (0) = 27 and 2(T) = x4, then

A= T
x1 coswl + BsinwT = xo

B To — 11 coswT
B sin wT’

Plugging these into (2.12) gives the energy as

mw? 9 To — 1 coswT 2
E= x1+< sinwT )

mw2

B 2sin? wT

(m% + 22 — 2129 cos wT)

Plugging A and B into (2.13), we get:

mw 2 . .
S = Y [(xg — 21 coswT)? coswT — xy sin® wT coswT — 21 sin? wWT (x5 — x; coswT)

sinw
mw 2 2 .2 22 ) )

= SsnoT [(1‘2 — 2x122 coswT + 7 cos wT) coswT — x7 sin” wT coswT — 2z129 sin” w1 + 2z sin” w1 cos
sin w
mw

2 2
= SsmwT [(a:l + x2) coswl — 2331332]

Taking the derivative, we get

275’ = % [—w (m% + .Z‘%) sin? wT — ((x% + x%) coswl — 23619;2) wcosz]
sin“ w
2
= % [— (m% + x%) + 2x129 cosz]
2
= —% (x% + 33% — 2122 cosz)
=-F

Thus the result is verified for the harmonic oscillator.



Chapter 3

All Is Not Well with
Classical Mechanics

3.1 Particles and Waves in Classical Physics

3.2 An Experiment with Waves and Particles
(Classical)

3.3 The Double-Slit Experiment with Light
3.4 Matter Waves (de Broglie Waves)

3.5 Conclusions
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Chapter 4

The Postulates———a
General Discussion

4.1 The Postulates

4.2 Discussion of Postulates I-111

Exercise 4.2.1. Consider the following operators on a Hilbert space V3(C):

o

0 —i 0
j —i L. =
0

B 1
Y 91/2

. 1
r T 91/2

S O =
o O O
o

1
0
1

O = O
O = O

(1) What are the possible values one can obtain if L, is measured?

(2) Take the state in which L, = 1. In this state what are (L,), (L2) and
AL,?

(3) Find the normalized eigenstates and the eigenvalues of L, in the L, basis.

(4) If the particle is in the state with L, = —1, and L, is measured, what are
the possible outcomes and their probabilities?

(5) Consider the state
1/2
= 12
1/21/2

in the L, basis. If L? is measured in this state and a result +1 is obtained,
what is the state after the measurement? How probable was this result?
If L. is measured, what are the outcomes and respective probabilities?

(6) A particle is in a state for which the probabilities are P(L, = 1) = 1/4,
P(L, =0) =1/2, and P(L, = —1) = 1/4. Convince yourself that the
most general, normalized state with this property is

i1 102 i85

e
V) = 5 |Lz:1>+m|Lz:0>+

59
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It was stated earlier on that if |¢)) is a normalized state then the state
e®|) is a physically equivalent normalized state. Does this mean that
the factors e multiplying the L, eigenstates are irrelevant? [Calculate
for example P (L, = 0).]

Solution.

(1) The possible values one can obtain if L, is measured are its eigenvalues

Eigenvalues are 1,0, —1.

(2) The state in which L,|¢) = 1-|¢) is the corresponding eigenvector

1
Yy =0
0
Then in [¢))
L (01 0\ [1 . 0
(Ly) = (| Loy =(100)— [1 0 1] (0] =—=@o00)[1] =0
2%0 1 0/ \o 2 0
L (0 1 0\ [0 1 0\ 0
(L2) = (| L2y =(100)= |1 0 1|1 0o 1] (o0 (010) (1
20 1 0/ \o 1 0o/ \o 0
AL = VT~ (EI7 =/ (5) -0 =
2 V2

(3) The characteristic equation for L, is

1
,)\ﬁ
0=det(Ly—A\) =det [ 75 —A =22 = Ae{1,0,-1
—A

1
0 7

The corresponding eigenvectors |A), then satisfy

1 b
—1)\ % (1) a a_Aa—'_ﬁc
0 = —A c ﬁ_/\a

where we have parameterized the components of |A) by (a b ¢). For A =1,
we can solve for b and ¢ in terms of a by solving the following equations:

b
—a+—==0
V2
a C
—=—b+—==0
V2 V2
b
— —a=0

}.
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We get
b=1+2a
c=a
We then determine ¢ by normalizing |A = 1):
a
A=1)=[V2a
a
a
= 1=A=1x=1)=(a" V2a* a*) | V2a | = 4|a|?
a
N 1
“T3
(where I have chosen the arbitrary phase to be 1).
We could do the same thing for A = 0:
b
I
V2
a ey
V2 V2
b
"
V2
has a solution:
b=0
c=—a
Normalizing;:
a
A=0)=1{ 0
—a
a
= 1=A=0A=0=(@"0 —a*)| 0 | =2[a?
—a
= a=—
V2
And for A = —1: .
a+—==0
V2
a c
= tb+—==0
V2 V2
b
—=+a=0
V2
We get

61
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Normalizing;:
a
A=-1)= | —v2a
a
a
= 1=\=—-1]A=-1)=(a" —V2a" a*) | —v2a | = 4a|?
a
. 1
=3
Therefore,
(1 1 (L [ 1
A=1==[v2] A=0=—]0 A=-1)=-[-v2
2\1 V2 2\ 1

Next, we should compute the components of these 3 L, -eigenstate in the
{I1),10),] — 1)}-basis of L,-eigenstates. But since L, is diagonal in the
basis in which L., L, and L, are given, the basis that Shankar used to
write down the matrix elements of L, L,, L. is the L -eigenbasis. So the
components of |L, = 1,0,—1) in the given basis that we just calculated
are their components in the L, -eigenbasis.

0

The eigenvectors of L, corresponding to L, = —11is [ 0 |. If we measure
1

L, in any state, the possible outcomes are any one of the eigenvalues
L, =41,0.

The probabilities for L, = £1,0 in the state | — 1) = |L, = —1) are:

1 1 1 0 1
P(Ly=1) =L, =1L = -1 =|(5 5z 5) | 0|| =7

222\ 4
P = 0) = (L. ~0lz. = 1P = | 0 — L (o) =2

V2 V2o |\ 2

(5) Consider the state

in the L, basis.



CHAPTER 4. THE POSTULATES——A GENERAL DISCUSSION 63

Since L? is measured to be +1, L, can be +1 or —1. The state after the
measurement is

Wj>after = N(|Lz = +1><Lz = +1| + |Lz = _1><Lz = _1|)|¢>

1
1 0 ?
=N|[lo]aoo)y+[0]©o01) :
0 1 e
100 % 3
=N{|0 0 0 ?:N 0
00 1) \—= L
V2 V2
o (0
2 2\ L
B+ (%) \&
1
2 2
= — 0
\f(l
V2

gt

where N normalizes the state. The probability of this result is

P(L2=+1)=P(L,=+1)+P(L, = —1)
Lz =+ + (L. = ~1[y)[?

AN :
=1(100) simplletex% +(001) %
V2 V2
1
11
12
3
T4

If L, is measured after L? was measured and L? = +1 was found, the
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possible outcomes and relative probabilities are:

1
V3 1
P(Lz = +1)after = |<Lz = +1‘w>after|2 = (1 0 0) 0 =3
2
Vi
1 2
V3
P(Lz = O)after = |<Lz = 0|w>after|2 = (0 1 O) 0 =0
2
Vi
1 2
V3
2 0 2
P(Lz = _l)after - |<Lz = _1‘¢>after| - (O 0 1) = g
2
3

(6) A particle is in a state for which the probabilities are P(L, = 1) = 1/4,
P(L,=0)=1/2, and P(L, = —1) = 1/4. Suppose it has the following
form

) = C1|L. = +1) + Ca|L, = 0) + Cs|L, = —1)

where C1, Cy and C3 are complex numbers. Then we have

1 1,
IC1> =CiCy = P(L, = +1) = 1 = O = 56161
1 1 .
2 = > = = = — — 102
[Cof” = C5C = P(L. = 0) = 5 = O 75
1 1,
G52 = C3C3 = P(L, = —1) = i = 03:§Gz53

where 61, 02 and J3 are arbitrary real numbers. Therefore, it has the form

eitsl ei52 ei§3
L. =0)+

[v) = 5 |Lz=1>+21ﬁ

The values of the phases matter when measuring an observable that is
incompatible with L., as an example:

1 1 1
<Lw:0‘Lz:1>:E<1O_1) 8 :E
0
1
(Lo =0|L.=0)= —(10 -1)[1] =0
V2 0
0
(Lo = 0L, = —1)= —@10 -1)[0] =L
V2 1 V2
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P(Ly = 0) = [(L, = 0[¢)|?

0101 2

:1 2'617 ’i532
gle™ — e

— l(eiél _ ei§3)(efi61 _ e*i(Sg)

8
— é(l _ ei((slf(;g) _ e*i((glf(sg) + 1)
- 1(2 2 ei(élfisg) + e*i(ﬁlf(gg)
-8 2

1

= 1(1 —cos(d; — J3))

It depends on phases and can be measured by experiment.

65

Exercise 4.2.2. Show that for a real wave function 1 (x), the expectation value
of momentum (P) = 0. (Hint: Show that the probabilities for the momenta +p
are equal.) Generalize this result to the case ¥ = ¢, where 9, is real and ¢ an
arbitrary (real or complex) constant. (Recall that |¢)) and «|i)) are physically

equivalent.)
Solution. Since ¢(x) is real, ¥*(z) = ().

+oo
)= [t (-ing- ) wio) ds
+oo
=i [

— 00

Y(x) dz
1. [T 0

= 75”1/700 %wz(:c) dx
+oo

= —%mw?(x)

=0

— 0o

Since ¥(z) — 0, as © — Foo.
For general case,

)= [ e (i) v o)

— 00

ox

=|c|? :O () (—iPia) V() do

:|C‘2.0
=0

Exercise 4.2.3. Show that if ¢/(z) has mean momentum (P), ePo*/M4)(x) has

mean momentum (P) + py.



CHAPTER 4. THE POSTULATES——A GENERAL DISCUSSION 66

Solution.

+o00 o

(P)==ih [ 0" (@) b(a) do

+oo
(P = =it [ el @) e )] do
. _-Eooo —ipox/h, ) * ipox/h _ ; ipox/h 9
= —zh/_oo [e ™ (x)][e ~ipo/h-(x) + e %w(m)] dx

+Oo . .
= —ih/ e~ o/ Pap* () . ePor/M ipo /B ap(x) da
—o0

+o0 ) ) o
— zh/ e_”’oz/hw* (z) - e”’”/h—w(x) dx

ox
+oo +oo o
=0 [ @@ d-in [ @) o) de
= (P)+po

4.3 The Schrodinger Equation (Dotting Your is
and Crossing your #s)



Chapter 5

Simple Problems in One
Dimension

5.1 The Free Particle

Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over E
and a sum over the + index as

Ult) = a; /0 h [%7;)1/2} B, (B, ale—E/MdE

2
Solution. F = 27; = p=aVv2mFk
m

dp = M _4E
2mFE
where o« = £1. Hence
e iEt/h
o) = [ dplpplee
0 ) 400 )
[l [ ap i ple e
oo 0
:/0 dE_7n|E’_><E’_e—iEt/h+/+°°dEmE’+><E’+|e—iEt/h
—o0 V2mE 0 VoOmE

m

+oo m . +oo )
= dE——— |E, - E,—e*‘Et/M/ dE E,+)(E, +|e 1Bt/
[, B g 1B s B E A

B ) T —iEt/h
- o;/o [(2mE)1/2} |E,a)(E, ale dE
Exercise 5.1.2. By solving the eigenvalue equation (5.1.3) in the X basis,

regain Eq. (5.1.8), i.e., show that the general solution of energy F is

exp [i(QmE)l/Q:r/ﬁ} exp [—i(QmE)l/Qx/h]
(2mh)1/2 7 (2rh)1/2

Yp(x) =4

67



CHAPTER 5. SIMPLE PROBLEMS IN ONE DIMENSION 68

[The factor (27rh)~'/? is arbitrary and may be absorbed into 8 and ~.] Though
Vg (z) will satisfy the equation even if F < 0, are these functions in the Hilbert
space?

Solution. In X basis, equation (5.1.3) is
(z|H|E) = E(x| E)
which becomes
h? d2
2mda?
The most general solution is

Ye(r) = EYp(r)

d)E(x) :A+e+%\/2mEz+A_e7%\/2mEz

where
(x| E) =Bz | E,+)+v(z|E,—)

B :A+\/27TFL
v=A_V2rh

If F <0, these solutions are not in the Hilbert space, since then the two terms
grow exponentially as x — £o0.

Exercise 5.1.3. We have seen that there exists another formula for U(t),
namely, U(t) = et/ For a free particle this becomes

i (Rt d? 1 (int\" d*"
_ (Rt L S L 11
Ut) = exp [h <2m da:2>] nz::o n! <2m> dx?n (5.1.18)
Consider the initial state in Eq. (5.1.14) with pp = 0, and set A =1,t'=0:

—z2/2

Y(z,0) = %71/4

Find ¢(z,t) using Eq. (5.1.18) above and compare with Eq. (5.1.15).
Hints : (1) Write ¢(x,0) as a power series:

x© nxQn
(@, 0) = (m) 1Y (711,32)
n=0

(2) Find the action of a few terms

) iht\ d? iht d?
’ om ) dz?’ 2! \ 2m da?
etc., on this power series.

( ) Collect terms with the same power of .
Look for the following series expansion in the coefficient of x2

(4)
(1 + M) Y (th) [t 1/2)(n+3/2) <“fﬁ>2
()

2! m

(5) Juggle around till you get the answer.
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Solution.

Exercise 5.1.4. Consider the wave function

T
= si _— <
Y(x,0) = sin ( T ) , x| < LJ2
=0, |z| > L/2

It is clear that when this function is differentiated any number of times we get
another function confined to the interval |x| < L/2. Consequently the action of

i (Bt d?
Ut) = —|— )=
() = exp [h (Qm) da:Q]
on this function is to give a function confined to |z| < L/2. What about the
spreading of the wave packet?

5.2 The Particle in a Box

Exercise 5.2.1. A particle is in the ground state of a box of length L. Suddenly
the box expands (symmetrically) to twice its size, leaving the wave function
undisturbed. Show that the probability of finding the particle in the ground
state of the new box is (8/37)2.

Exercise 5.2.2. (a) Show that for any normalized |¢), (¢|H|¢) > FEy, where
Ey is the lowest-energy eigenvalue. (Hint : Expand [¢) in the eigenbasis of H.)

(b) Prove the following theorem: Every attractive potential in one dimension
has at least one bound state. Hint: Since V is attractive, if we define V(c0) = 0,
it follows that V(z) = —|V(z)| for all . To show that there exists a bound
state with £ < 0, consider

VYa(z) = (3) v e’ /2

T
and calculate

h? d?
(0) = (bl Hltbo). = V(@)
Show that E(«) can be made negative by a suitable choice of a. The desired
result follows from the application of the theorem proved above.

Exercise 5.2.3. Consider V(z) = —aV{d(x). Show that it admits a bound
state of energy E = —ma?V?/2h?. Are there any other bound states? Hint:
Solve Schrodinger’s equation outside the potential for £ < 0, and keep only
the solution that has the right behavior at infinity and is continuous at x = 0.
Draw the wave function and see how there is a cusp, or a discontinuous change
of slope at x = 0. Calculate the change in slope and equate it to

+e d2w
[ (@)

(where ¢ is infinitesimal) determined from Schrédinger’s equation.
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Exercise 5.2.4. Consider a particle of mass m in the state |n) of a box of
length L. Find the force F = —9F/JL encountered when the walls are slowly
pushed in, assuming the particle remains in the nth state of the box as its size
changes. Consider a classical particle of energy F,, in this box. Find its velocity,
the frequency of collision on a given wall, the momentum transfer per collision,
and hence the average force. Compare it to —9F/JL computed above.

Exercise 5.2.5. If the box extends from x = 0 to L (instead of —L/2 to L/2)
show that v, (z) = (2/L)"/?sin(nwz/L),n = 1,2,...,c0and E, = h?w*n?/2mL>

Exercise 5.2.6. Square Well Potential. Consider a particle in a square well
potential:

Since when V; — 0o, we have a box, let us guess what the lowering of the
walls does to the states. First of all, all the bound states (which alone we are
interested in), will have E < V. Second, the wave functions of the low-lying
levels will look like those of the particle in a box, with the obvious difference
that v will not vanish at the walls but instead spill out with an exponential tail.
The eigenfunctions will still be even, odd, even, etc.

(1) Show that the even solutions have energies that satisfy the transcendental
equation

ktanka = K (5.2.23)

while the odd ones will have energies that satisfy
kcotka = —k (5.2.24)

where k£ and ik are the real and complex wave numbers inside and outside the
well, respectively. Note that k& and k are related by

k* + k? = 2mVy /h? (5.2.25)

Verify that as Vj tends to oo, we regain the levels in the box.

(2) Equations (5.2.23) and (5.2.24) must be solved graphically. In the (o =
ka, 8 = ka) plane, imagine a circle that obeys Eq. (5.2.25). The bound states
are then given by the intersection of the curve atana = 3 or acot @« = —f with
the circle. (Remember o and § are positive.)

(3) Show that there is always one even solution and that there is no odd so-
lution unless Vy > h?m?/8ma?. What is E when V; just meets this requirement?
Note that the general result from Exercise 5.2.2b holds.

5.3 The Continuity Equation for Probability

Exercise 5.3.1. Consider the case where V = V,. — i{V;, where the imaginary
part V; is a constant. Is the Hamiltonian Hermitian? Go through the derivation
of the continuity equation and show that the total probability for finding the
particle decreases exponentially as e=2Vi/" Such complex potentials are used
to describe processes in which particles are absorbed by a sink.

Exercise 5.3.2. Convince yourself that if ) = 01[), where ¢ is constant (real or
complex) and 1 is real, the corresponding j vanishes.
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Exercise 5.3.3. Consider

LY oy
N i(pr)/h
Ve (27Th> €

Find j and P and compare the relation between them to the electromagnetic
equation j = pv, v being the velocity. Since p and j are constant, note that the
continuity Eq. (5.3.7) is trivially satisfied.

Exercise 5.3.4. Consider ¢) = Ae'?*/" 4+ Be~"%/" in one dimension. Show that
j = (JA]* = |B|?) p/m. The absence of cross terms between the right- and left-
moving pieces in 1 allows us to associate the two parts of j with corresponding
parts of 1.

5.4 The Single-Step Potential: A Problem in
Scattering

Exercise 5.4.1. Evaluate the third piece in Eq. (5.416) and compare the

resulting 7' with Eq. (5.4.21). [Hint: Expand the factor (k% — 2mVO/FL2)1/2
near k1 = ko, keeping just the first derivative in the Taylor series.]

Exercise 5.4.2. (a) Calculate R and T for scattering of a potential V(x) =
Voad(z). (b) Do the same for the case V =0 for |z| > a and V =V} for |z| < a.
Assume that the energy is positive but less than Vj.

Exercise 5.4.3. Consider a particle subject to a constant force f in one dimen-
sion. Solve for the propagator in momentum space and get

Up,t;p',0)=8(p—p — ft) ot (P =p")/6mnf

Transform back to coordinate space and obtain

oy [ m \1/? i|m@-2)" 1 N
U(x’t’x’o)_(thit> eXp{h[ TR AL GRS Rl yen

[Hint: Normalize ¢ g(p) such that (F | E') = 6 (F — E’). Note that E is not
restricted to be positive.]

5.5 The Double-Slit Experiment

5.6 Some Theorems
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